
Управління розвитком складних систем (53 – 2023) ISSN 2219-5300

© Jianjun Wang, Chenjian Dong, Kai Wang, Zhicong Chen, Rong Xie, Weiping Zhu,

 Andriy Topalov, Oleksii Povorozniuk 111

DOI: 10.32347/2412-9933.2023.53.111-119

UDC 004.05

Jianjun Wang
Yunzhou (Yancheng) Innovation Technology Co., Ltd, China

https://orcid.org/0009-0000-8417-4099

Chenjian Dong
School of Automobile and Transportation, Yancheng Polytechnic College, Yancheng, China

https://orcid.org/0000-0003-3529-6529

Kai Wang
Yunzhou (Yancheng) Innovation Technology Co., Ltd, China

https://orcid.org/0009-0008-1175-6045

Zhicong Chen
Yunzhou (Yancheng) Innovation Technology Co., Ltd, China

https://orcid.org/0009-0001-2511-8289

Rong Xie
Wuhan University, China

https://orcid.org/0000-0001-9596-0562

Weiping Zhu
Wuhan University, China

https://orcid.org/0000-0001-7714-350X

Andriy Topalov
PhD, Associate Professor, Department of Computerized Control Systems

https://orcid.org/0000-0003-2745-7388

Admiral Makarov National University of Shipbuilding, Ukraine

Oleksii Povorozniuk
Postgraduate Student, Department of Computerized Control Systems

https://orcid.org/0000-0002-0455-9915

Admiral Makarov National University of Shipbuilding, Ukraine

SOFTWARE ANALYSIS FOR MOBILE ROBOTS CONTROL PROGRAMS

Abstract. The use of the software allows the mobile robot to control the working parameters: turn on and

off the mechanisms and devices, monitor the indicators of the sensors, perform various technological

operations (cutting, welding, painting, etc.), calculate the trajectory of movement depending on the working

surface, etc. Research in the field of robotics testifies to the high activity of scientific works on the creation

of high-precision and energy-efficient robotic systems in general for autonomous mobile robots by

improving control programs. The work is devoted to the review and analysis of the software for creating

control programs for mobile robots. The work presents a generalized structural diagram of a hierarchical

mobile robot control system, in which decentralized software processing of information takes place, and

separate software and hardware components are remote from each other. When building a mobile robot

control system, various robot programming environments are considered, which represent a wide range of

tools for creating various models and systems. Moreover, the issues of using graphic and text software

environments with high-level programming languages are considered. Development environments are

considered among the software complexes: LabView; NXT-G; Robolab; EV3-G; MRDS; Scratch;

12Blocks; Simulink; ROBO Pro; Arduino Studio and TRIK Studio. The following are considered the most

common programming languages at work: C++, Python, Pascal, JAVA and Scratch. All software is

analyzed according to the following criteria: mathematical expressions, computational model,

interpretation, stand-alone use, code generation, modeling, debugging, tutorials, free, platforms, designers,

license and development prospects. Among the software, EV3 and Arduino text tools stand out for their

capabilities, and Simulink and LabView among graphic tools, as these software tools have proven

themselves to be powerful development environments with fairly universal approaches to creating

programs in mobile robotics.

Keywords: mobile robot; software; analysis; programming languages; control system

Управління технологічними процесами

112

Problem statement

Compiling complex programs for robots includes

writing the software according to which the robot

operates. In robotics, software is considered as an area

that extends from the software of the robots themselves,

the software of the systems related to the robots, to the

software related to robotics as a whole and covers both of

the above mentioned types. Despite the existence of such

classifications, it is not always clear to which group one

or another type of software used in robotics should be

assigned [1–3].

The central core of the robot's software includes

programs written by the end user and interpreter software

that translates the user's programs into a language

understood by the controller. The software of the

controllers allows various systems to work, providing a

response to feedback signals. Robotic systems can output

information using graphics systems, which requires

special software, and controllers process signals in real

time, which requires significant computing power.

Moreover, the second-generation robots, based on the use

of sensory information (visual and tactile), have a much

larger volume of software for processing the information

received from the sensors.

Sensor devices (video cameras, sets of sensors) are

able to provide the feedback system with a large amount

of information, and one central processor will not be able

to process it. Therefore, in the processing process, there

is a multi-level at which information is processed by

processors with the appropriate software [4–7].

Therefore, robotics software is based on the

extensive use of various disciplines. Combination of

automated systems of design and management of

production processes. The complexity of the software

used in both systems is extremely high. Since robotics is

built on three foundations: the application of electronics,

mechanics, сomputer software. Programming and

robotics are generally closely related. More and more

scientists and manufacturers are investigating the

processes of writing high-precision and energy-efficient

software, as interest in process robotics grows, as does

investment in projects related to programming and

robotics.

The article aim

Existing programming environments are

developing quite quickly, and analytical publications

superficially highlight the important tasks of connecting

the control program with robotics and do not provide

generalized practical recommendations for using one or

another software depending on the task of the robot. The

purpose of this article is to analyze and formalize the

distribution of commercial and open tools for

programming mobile robots, taking into account the

technical features of writing programs.

Basic material

One of the fastest growing areas of robotics is

mobile robotics [8 – 13]. Mobile robot can be divided

into two categories: one is a remote-controlled robot, and

the other is a robot that can perform certain actions in an

autonomous mode. In most cases, the robot is controlled

by a human operator at the movement level, which

requires a person to constantly observe the robot and

quickly control its movements.

The mobile robot control system is presented in fig.

1. Software for the mobile robot control system should

solve the following tasks:

− Processing of sensory data (including data from

the interface with the operator) in order to collect

information about the robot and the environment around

it.

− Planning activities to understand the target task

and planning the sequence of subtasks necessary to

complete this task.

− Formation of such software trajectories of WRI

movement that would lead to the execution of a local

subtask by the robot (for example, arriving at a target

point in an environment with obstacles).

Formation of such setting actions on the actuators

of the robot, which would lead to the most accurate and

fast execution of the program trajectory of motion.

Figure 1 – Generalized block diagram

of the mobile robot control system

Управління розвитком складних систем (53 – 2023) ISSN 2219-5300

113

One of the features of building a control system for

an intelligent mobile robot is that it is built according to

a hierarchical multi-level principle, according to which,

with an increase in the hierarchical rank of a subsystem,

its degree of intelligence increases. The topmost link in

this hierarchy is the behavior control system, followed by

the motion control system, and the actuator control

system is the lowest link in this hierarchy. In addition to

the listed subsystems, the structure has an information-

measuring system, which must also have some

intellectual capabilities, and an interface with the

operator.

The behavior control system (strategic level) is

designed to form the appropriate behavior of the robot to

complete the task assigned to it. At the output, this system

generates target designation for the motion control

system: the target waypoint, the required state of the

robot drives, the commands for controlling the operating

modes of the information-measuring system.

The motion control system (tactical level) is

designed to plan such software trajectories of the robot's

movement that would bring the robot to the specified

target state in an environment with obstacles, taking into

account the dynamic characteristics of the robot. The

target state for this system is formed by the behavior

management system. At the output, this system generates

the required command value of the speeds of linear

movement, azimuthal rotation of the robot.

The actuator control system (drive level of the

control system) solves the tasks of controlling the

actuators of the robot. This system implements an

interface with the robot's hardware.

The information-measuring system is designed to

collect, process and convert sensory information into

signals that are convenient for use in the robot control

system. In this robot, the video image received from the

camera is converted into a set of parameters, on the basis

of which other subsystems make certain decisions.

The operator interface is an on-screen menu for

conducting a natural language text dialogue with the user,

as well as a manual control panel for the robot.

To create a robot control system, you can use

different programming environments. These

environments can be divided into two large groups - these

are visual and text-based programming environments.

Also, robot control environments are distinguished by

whether they are specialized in controlling a particular

robot or support a number of robots from different

manufacturers (Fig. 2).

One of the important features of working with text

languages is that you have to remember the syntax of the

language, keywords, parentheses, commas, and so on.

But with a visual programming language, it is easier to

determine which block is responsible for what and how

to build connections between them. Visual programming

is used not only for simple tasks, but also in quite

complex tasks. For example, in relationship editors in

relational databases, dataflow programming, program

designers, and so on [14 – 18].

During the development of any program, it is

assumed that it will develop over time – to receive new

functions and entities. Perhaps some parts may change

with an increase in the number of robot sensors. In visual

programming, the interface for manipulating graphic

objects is currently limited, but development is actively

underway to expand the work area, which will allow

creating complex programs. To manage complexity in

text programming, many concepts and architectural

approaches have come up. For example, object-oriented

programming, various architectural design patterns. If

you follow them, it will save the developer time and it

will be easier to scale the project.

Figure 2 – Examples of robot programming environments

C and C++ are #1 among robotics languages.

Although C++ is not so easy to work with because it

requires software to be compiled, it is still one of the most

reliable programming languages. It allows you to create

complex programs that follow a clear structure. Today,

C++ is arguably more useful in robotics than C.

However, the latter remains one of the most energy-

efficient programming languages. Python is a very

flexible and fast open source programming language.

It is probably one of the easiest, most popular and most

versatile languages. It is object-oriented programming

(OOP), completely connected with the development

Robot programming environments

Visual

Specialized
Supporting for a

range of robots

NXT-G, etc.
Trick Studio,

etc.

Microsoft

Robotics,

etc.

Text

Specialized

RobotC,

etc.

Arduino,

etc.

BricxCC,

etc.

Supporting for a

range of robots

Управління технологічними процесами

114

of artificial intelligence and virtual reality. Additionally,

there are a large number of free libraries for Python.

Python is useful in robotics because it is one of the main

programming languages in ROS (along with C++). But it

may become even more popular as more robotic

electronics support this language by default. Pascal is a

BASIC language, and is literally based on the BASIC

language. Most often, industrial robots are programmed

in the Pascal language. It is simple because it uses

structured programming and data structuring. Java is a

general-purpose object-oriented programming language

based on classes. It is designed to allow application

developers to build code once and then reuse it anywhere.

In other words, JAVA code can run on any JAVA-

enabled platform without the need for recompilation. In

addition, JAVA is a useful language in robotics and is

used in the creation of artificial intelligence. Scratch is

extremely popular among beginning roboticists. It is a

visual programming language, in essence its principle of

operation is to drag and connect blocks.

LabVIEW [19, 20] is a graphical G-language

software development environment created by National

Instruments in 1986. LabVIEW allows you to quickly

create applications for control, testing, measurement, and

more. This environment allows you to program in terms

of data flows and allows you to use various design

patterns to create applications, for example, it is possible

to apply the architecture of a state machine. LabVIEW

supports a large number of hardware platforms, provides

a huge set of libraries that contain tools for working with

complex mathematical structures, tools for creating

virtual instruments, computer vision algorithms, etc. For

the interaction of blocks, libraries provide a set of

different links that differ in the type of data transmitted

through them. The program created in the LabVIEW

environment is a virtual instrument (virtual instrument),

it is divided into two parts: a block diagram that describes

the logic of a virtual instrument, and a front panel that

describes the interface of the instrument. It is important

to note that the language compiler automatically

parallelizes code sections that have parallel blocks,

creating separate threads for their execution. The

possibilities of using this environment are great, there are

components that allow you to use this environment to

work with LEGO MINDSTORMS NXT/EV3 robotics

educational kits. LabVIEW allows you to interpret

programs and generate code from them to run programs

autonomously on a device.

Microsoft Robotics Developer Studio (MRDS)

[21]. MRDS Platform includes the visual programming

language Visual Programming Language (VPL) and a

simulated visual 3D environment. The visual

programming language the implementation of the

algorithm, but also the management of the complexity of

the project. In Visual Programming Language (VPL) is

offered as a means of describing robot behavior

algorithms for novice programmers, the C # language is

for professional ones. Writing a program in VPL consists

in choosing the appropriate components for solving the

problem and establishing a connection between them.

LEGO MINDSTORMS Education NXT-G [22]

is a graphical programming environment for the LEGO

Mindstorms NXT constructor. The environment is based

on the LabVIEW industrial environment and uses the G

data flow language. This software has an intuitive

interface, the creation of robot control programs

resembles the creation of flowcharts and is carried out

using special blocks placed on LEGO beams along the

axis of the sequence of actions. The order of program

execution is determined by the order of the blocks. NXT-

G automatic laces the blocks in the diagram physically:

execution obeys the order of the blocks, the data needed

by the following blocks must be explicitly connected by

the flow. The environment provides a rather large set of

blocks (one hundred and ninety-three). In NXT-G, there

is practically no support for mathematical expressions: to

specify complex expressions, you have to build a parse

tree in blocks. The advantage of the environment is that

it is distributed free of charge.

Robolab [23] is another robot programming

environment that is a simplified version of the LabView

industrial programming environment. The environment

uses a visual language that has a total of about four

hundred blocks. In order not to frighten a novice user

with a cumbersome palette, the environment has the

ability to select the level of use of the program. Levels

limit the size of the palette used, the first level, for

example, contains about twenty elements and only allows

you to substitute a block in the empty space allotted for

it. At the last level, the entire palette is available to the

user (the placement of blocks is not limited in any way).

The palette includes control blocks, blocks of various

arithmetic metrical actions (mathematical expressions

can be specified explicitly in C language), blocks of

variables, subroutines, work with threads of execution

(parallelization of execution), loops (implemented using

labels and jumps). Blocks in Robolab are shrouded in a

network of various "wires", various modifiers come

through them, corresponding to different types of data.

This makes it difficult to understand when working with

a large program. Another disadvantage is that the blocks

for interacting with different constructors are not

separated in any way. They are mixed, but not all

commands, for example, for the LEGO RCX can be used

with the LEGO NXT robot.

TRIK Studio [24] Another example of a

programming environment is the TRIK Studio robot

programming environment (see Figure 6). It allows you

to program several types of microcontrollers – LEGO and

TRIK using a sequence of icons. In total, there are about

a hundred different blocks in the language that are

responsible for interaction with the robot and algorithmic

Управління розвитком складних систем (53 – 2023) ISSN 2219-5300

115

and mathematical support. The environment has a

modern user interface. For the convenience of

programming, the blocks in the palette are divided into

groups according to their functional value. The

programming language in TRIK Studio is completely

based on the control flow model, data flows are not used.

ROBO Pro [25] is the official programming

environment for the ROBO TX controller that controls

models assembled from the fischertechnik kit.

Programming in it is carried out in the language of block

diagrams. The language supports all major algorithmic

constructs and data types. The environment does not

satisfy the rest, "advanced" criteria. It is worth noting that

ROBO Pro is practically the only environment that

programs real robots in terms of block diagrams,

however, the system does not support programming of

any other devices, except for the ROBO TX controller.

12Blocks [26] is another Scratch-like tool for

programming Lego Mindstorms NXT and Arduino

robots, and other less popular platforms are available

(like Scribbler). The environment is cross-platform,

available for Windows, Linux and Mac OS X. It is

possible to execute programs on the Cogmation 3D

simulator, generate code from a diagram, and integrate

with ROS7. The language supports all the basic

algorithmic constructions and data types, it is possible to

extract code into a subroutine. There are opportunities for

autonomous execution of the program by the robot,

debugging the program on a computer with sending

commands to the robot, as well as plotting graphs from

sensors in real time. The negative aspects include the

following: 12Blocks has poor methodological support,

there are practically no communities around the

environment on the Internet (however, there is a set of

English-language video instructions for using the main

features of the environment). Also, the system does not

have any means of automatic checking of tasks. 12Blocks

is distributed under a commercial license.

Scratch [27] is an open source cross-platform

visual programming environment developed at the

Massachusetts Institute of Technology to teach students

the basics of computer science. Programming is carried

out by connecting blocks, resembling mosaic elements.

Scratch allows you to draw and program simple graphic

objects called sprites. In its “pure” form, Scratch does not

allow you to program robots, however, there are a large

number of extensions and environments based on Scratch

that allow you to program Lego WeDo, Lego NXT, Lego

EV3 and Arduino robots. Among such "independent"

projects created on the basis of Scratch, we mention S4A

and mBlock for Arduino programming and Enchanting

for NXT programming. Common advantages for

Scratch-like environments are ease of learning, an

attractive user interface, openness and freeness, the

ability to debug remote control of the robot from a

computer and download code for offline execution (the

latter is not available in all Scratch systems). There is also

the possibility of executing a program on a virtual sprite,

which, according to our criteria, can be considered as

debugging on a simulator (however, there is no question

of the proximity of such a simulation to reality). The

negative aspects include the lack of "advanced" means of

teaching programming. For example, there is no

possibility of generating readable code from a visual

model, which could greatly facilitate the transition of

students to textual languages. Algorithmic aspects are not

fully supported, for example, there is no support for

arrays of dimension greater than 1. There are also no tools

for automatically checking the correctness of task

solutions.

LEGO MINDSTORMS Education EV3 [28]

software16 for LEGO Mindstorms EV3 sets solves some

of the problems of the NXT-G environment, such as

setting math formulas. The environment supports LEGO

NXT programming (although there are known

compatibility issues). EV3 software provides the user

with a small set of blocks for programming, execution is

subject to an explicitly defined flow of control, which

partially uses the data transfer model (see Figure 4). The

language provided by the environment uses fifty-three

different blocks that are responsible for controlling

various sensors, sensors, actuators, controller buttons, for

implementing mathematical functions, as well as

algorithmic constructions: fork, loop, switch, etc. The

environment does not support all operating systems (for

example, there is no support for Linux).

Simulink [29] is a graphical programming and

simulation environment that uses block diagrams. The

environment was created by MathWorks. The principles

of its work are similar to LabVIEW. Simulink allows you

to simulate various dynamic models, conduct simulation

and automatic code generation, testing and verification.

Provides many libraries with various blocks, allows you

to interact with the MATLAB package, use algorithms in

models and export simulation results for further analysis.

Using the Robotics System Toolbox13, Simulink has the

ability to develop control programs for autonomous

robots. The environment provides an extensive set of

libraries containing various blocks (about two hundred)

for verification, interaction with sensors and other robot

devices, for working with mathematical operations, and

others. Like LabVIEW, Simulink is based on a data flow

model, which is better suited for robot programming due

to its reactive nature.

Arduino [30] is a robot programming environment

based on Arduino. The Arduino development

environment interface contains the following main

elements: a text editor for writing code, a message area,

a text console, a toolbar with traditional buttons, and a

main menu. This framework is written in Java and is

Управління технологічними процесами

116

based on Processing and other open source software.

Unlike the online version of the code editor (Arduino

Web Editor), the desktop version can be used when there

is no internet. This software allows the computer to

communicate with the Arduino to both transfer data and

upload code to the controller. The Arduino programming

language is based on C / C ++, linked to the AVR Libc

library and allows you to use any of its functions.

All the listed software are evaluated according to

the criteria and the results of the comparison of the

environments are given in the table.

Table – Comparison of visual programming environments for robots

L
ab

V
ie

w

N
X

T
-G

R
o

b
o

la
b

E
V

3
-G

M
R

D
S

S
cr

at
ch

1
2

B
lo

ck
s

S
im

u
li

n
k

R
O

B
O

P
ro

A
rd

u
in

o

S
tu

d
io

T
R

IK

S
tu

d
io

Mathematical

expressions
+ – + + + ± + + + + +

Computation

model1 D D C D D C C D C D C

Interpretation + + + + + + + + + + +

Standalone

use
+ + + + – ± + + + + +

Code

generation
С – – – С# –

C and

etc.

C,

HDL,

and etc.

– Arduino C

C,

JavaScrip

t, F# and

etc.

Simulation – – – – + ± + + – + +

Debugging + – ± ± + + + + + + +

Methodologic

al aids
+ + + + – + – + + + –

Free
– + – ± ± + – – + + +

Platforms2 WLM WM WM WM W WLMw WLM WLM W WLM WLM

Constructors3 NE N N NE Nf NEA NAS EA f A NET

License4 P P P P P O P P P O O

Development + - - + - + - + + + +

1C means for "control flow", D – for "data flow".
2For lack of space, abbreviations are used. Each letter corresponds to the operating system. W means

“Windows”, M – “Mac OS X”, L – “Linux”, w – “web”.
3For lack of space, abbreviations are used. Each letter corresponds to a constructor. N means “NXT”, E –

“EV3”, A – “Arduino”, f – “fischertechnik”, T – “TRIK”.
4O means “open”, P – “proprietary”.

Conclusions

The use of the software allows the mobile robot to

control the working parameters: turn on and off the

mechanisms and devices, monitor the indicators of the

sensors, perform various technological operations

(cutting, welding, painting, etc.), calculate the trajectory

of movement depending on the working surface, etc.

High-quality software allows you to increase the

accuracy of work and the efficiency of the use of energy

resources.

The article presents a comparative analysis of a

large number of currently popular environments for

programming mobile robots. After considering all the

tools listed above, it becomes clear that programming

environments for robots, as a rule, are a small set of text

or graphic blocks. Based on these blocks, programs are

created to solve typical robot tasks using an easy-to-

understand execution model – the control flow model

(perhaps with partial use of the model's data flow). That

is, most programming environments are primarily based

on the execution model in terms of data flows, where the

useful work of a block is performed only when data is

received.

Of course, the evaluation of the software

environment depends on the field of use of the mobile

Управління розвитком складних систем (53 – 2023) ISSN 2219-5300

117

robot and the technical task. It is necessary to take into

account the peculiarities of the applied field, the

characteristics of the mobile robot and the principles of

its operation. At the same time, the most important

quality of programs is, on the one hand, the ability to

process a large flow of data in real time, and on the other

hand, comprehensibility as a property of the program to

minimize the necessary intellectual effort to understand

it. All presented software environments cope with the

first part, but the question remains only in the scalability

of data processing. On the other hand, it should be noted

that there are more and more software environments with

easy-to-write programs and a high-quality interface. In

recent decades, programming environments have

adopted and facilitated many actions that programmers

often use: project navigation, code highlighting,

developer hints, and more. Thus, EV3 and Arduino

programming environments stand out among text

languages, and Simulink and LabView among graphic

ones, since these software tools, according to table, stand

out as powerful development environments with fairly

universal approaches to creating control programs for

mobile robots.

Financing

This study is financially supported by the National

High Level Foreign Experts Introduction Project

(G2022014116L) and Yancheng Key Technology

Unveiling Project (Research, development and

application of intelligent unmanned boat and cluster

control technology).

 __

References

1. Banyasad, Omid. (2000). A Visual Programming Environment for Autonomous Robots.

2. Na, Liu, Gerasin, Oleksandr, Topalov, Andrіy & Karpechenko, Anton. (2021). Analysis of tasks of monitoring and

automatic control of agricultural mobile robot. Management of Development of Complex Systems, 47, 174–179,

dx.doi.org\10.32347/2412-9933.2021.47.174-179.

3. Gerasin, O. S. (2014). The analysis of features multi-purpose mobile robots. Scientific papers. Computer Technology

Series, 50, 238, 25–32. [in Ukrainian].

4. Kozlov, O. V., Gerasin, O. S., Kondratenko, G. V. (2017). Complex of tasks of monitoring and automatic control of

mobile robots for vertical movement. International Journal “SHIPBUILDING & MARINE INFRASTRUCTURE”, 2(8), 77–87.

5. Morozovskiy, V. T. (1970). Multi-loop automatic control systems, Moscow, Energiya Publisher, 288. [in Russian].

6. Topalov, A. M. (2022). Analysis of microelectronic digital devices for collecting, processing and transmitting data to

robotic systems. Materials of the all-Ukrainian scientific and practical conference of young scientists and students "Information

technologies in education, technology and industry" on October 13, Ivano-Frankivsk, 117–119.

7. Portsmore, M. (1999). ROBOLAB: Intuitive Robotic Programming Software to Support Life Long Learning. APPLE

Learning Technology Review..

8. Biggs, G., MacDonald, B. (2003). A survey of robot programming systems. Proceedings of the Australasian conference

on robotics and automation, P. 1–3.
9. Simpson, Jonathan, Jacobsen, Christian L., Jadud, Matthew C. (2006). Mobile robot control. Communicating Process

Architectures, 225.

10. Simpson, Jonathan, Jacobsen, Christian L. (2008). Visual Process-Oriented Programming for Robotics. CPA, 365–380.

11. Posso, Jeremy C., Sampson, Adam T., Simpson, Jonathan. (2011). Process-Oriented Subsumption Architectures in

Swarm Robotic Systems. CPA, 303–316.

12. Simpson, Jonathan, Ritson, Carl, Toward, G. (2009). Process Architectures for Behavioural Robotics. CPA, 375–386.

13. Brooks, Rodney [et all]. (1986). A robust layered control system for a mobile robot. Robotics and Automation, IEEE

Journal, 2, 1, 14–23.

14. Connell, Jonathan H. (1989). A colony architecture for an artificial creature: Tech. Rep.: DTIC Document.

15. Arkin, Ronald C. (1987). Motor schema based navigation for a mobile robot: An approach to programming by behavior.

Robotics and Automation. Proceedings. 1987 IEEE International Conference on IEEE. Т. 4. 1987. P. 264–271.

16. Rosenblatt, Julio K. (1997). DAMN: A distributed architecture for mobile navigation. Journal of Experimental &

Theoretical Artificial Intelligence, 9, 2–3, 339–360.

17. Diprose, James P, MacDonald, Bruce A, Hosking, John G. (2011). Ruru: A spatial and interactive visual programming

language for novice robot programming. Visual Languages and Human-Centric Computing (VL/HCC), 2011 IEEE Symposium on

IEEE. 2011. P. 25–32.

18. Johnston ,Wesley M., Hanna, JR, Millar, Richard J. (2004). Advances in dataflow programming languages. ACM

Computing Surveys (CSUR), 36, 1, 1–34.

19. Hils, Daniel D. (1992). Visual languages and computing survey: Data flow visual programming languages. Journal of

Visual Languages & Computing, 3, 1, 69–101.

20. Powers, Kris, Gross, Paul, Cooper, Steve. (2006). Tools for teaching introductory programming: what works? ACM

SIGCSE Bulletin, 38, 560–561.

Управління технологічними процесами

118

21. Kodosky, Jeffrey, MacCrisken, Jack, Rymar Gary. (1991). Visual programming using structured data flow. Visual

Languages, 1991, Proceedings. 1991 IEEE Workshop on / IEEE. Р. 34–39.

22. Gomez-de Gabriel, Jesús M., Mandow, Anthony, Fernandez-Lozano, Jesús. (2011). Using LEGO NXT Mobile Robots

With LabVIEW for Undergraduate Courses on Mechatronics. IEEE Trans. Educ., 54, 1, 41–47.

23. Jackson, Jared. (2007). Microsoft robotics studio: A technical introduction. Robotics & Automation Magazine, IEEE, 14,

4, 82–87.

24. Kelly, James Floyd. (2010). Lego Mindstorms NXT-G Programming Guide. Apress.

25. Cyr, Martha. (2001). Robolab N. Software Reference Guide. Moscow: INT [translation].

26. Lytvynov, Yu. V., Kirylenko, Ya. A. (2015). TRIK Studio: an environment for teaching programming with the use of

robots. V All-Russian conference "Modern technological education: from computer to work" (collection of theses), р. 5–7.

27. Robot Pro URL:https://apps.apple.com/ru/app/robo-pro-coding/id1569643514

28. Robot Operating System, URL: http://www.ros.org/

29. Resnick, M., Maloney, J., Monroy-Hern´andez, Scratch A. (2009). Programming for all. Communications of the ACM,

52, 11, 60–67.

30. Araujo, Hernando León, Agudelo, Jesús Gulfo, Crawford, Richard, Vidal, Jorge, Ardila, Uribe. (2022). Autonomous

Mobile Robot Implemented in LEGO EV3 Integrated with Raspberry Pi to Use Android-Based Vision Control Algorithms for

Human-Machine Interaction. Machines, 10(3), 193.

31. Dong, C., Povorozniuk, O., Topalov, A., Wang, K., Chen, Z. (2023). Development of the control system for LEGO

Mindstorms EV3 mobile robot based on MATLAB/Simulink elements. Technology Audit and Production Reserves, 1 (2 (69)), 30–

35. doi: https://doi.org/10.15587/27065448.2023.274846.

32. Oltean, S. E. (2019). Mobile Robot Platform with Arduino Uno and Raspberry Pi for Autonomous Navigation. Procedia

Manufacturing, 32, 572–577.

The article was received by the editorial board 29.03.2023

__

Цзяньцзюнь Ван

Yunzhou (Yancheng) Innovation Technology Co., Ltd, Китай

https://orcid.org/0009-0000-8417-4099

Ченьцзянь Донг

Школа автомобіля та транспорту, Яньченський політехнічний коледж, Яньчен, Китай

https://orcid.org/0000-0003-3529-6529

Кай Ван

Yunzhou (Yancheng) Innovation Technology Co., Ltd, Китай

https://orcid.org/0009-0008-1175-6045

Чжицон Чен

Yunzhou (Yancheng) Innovation Technology Co., Ltd, Китай

https://orcid.org/0009-0001-2511-8289

Ронг Сє

Уханьський університет, Китай

https://orcid.org/0000-0001-9596-0562

Вейпін Чжу

Уханьський університет, Китай,

https://orcid.org/0000-0001-7714-350X

Андрій Топалов

Кандидат технічних наук, доцент, доцент кафедри комп’ютеризованих систем управління,

https://orcid.org/0000-0003-2745-7388

Національний університет кораблебудування ім. адмірала Макарова, Україна

Олексій Поворознюк

Аспірант кафедри комп’ютеризованих систем управління, https://orcid.org/0000-0002-0455-9915

Національний університет кораблебудування ім. адмірала Макарова, Україна

АНАЛІЗ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

ДЛЯ СТВОРЕННЯ ПРОГРАМ КЕРУВАННЯ МОБІЛЬНИХ РОБОТІВ

Анотація. Використання програмного забезпечення допомагає мобільному роботу контролювати робочі

параметри: вмикати та вимикати механізми і пристрої; стежити за показниками датчиків; виконувати різні

технологічні операції (різання, зварювання, фарбування тощо); розраховувати траєкторію руху залежно від робочої

поверхні тощо. Дослідження в області робототехніки свідчать про високу активність наукових робіт зі створення

Управління розвитком складних систем (53 – 2023) ISSN 2219-5300

119

високоточних і енергоефективних робототехнічних систем для автономних мобільних роботів шляхом вдосконалення

керуючих програм. Робота присвячена розгляду й аналізу програмного забезпечення створення керуючих програм

мобільних роботів. У роботі представлено узагальнену структурну схему ієрархічної системи керування мобільним

роботом, в якій відбувається децентралізоване програмне опрацювання інформації, а окремі програмно-апаратні

компоненти віддалені одні від одних. При побудові системи управління мобільного робота розглядаються різні

середовища програмування роботів, які представляють широкий інструментарій для створення різних моделей і систем.

Розглядаються питання застосування графічних та текстових програмних середовищ з мовами програмування високого

рівня. Серед програмних комплексів розглядаються середовища розробки: LabView; NXT-G; Robolab; EV3-G; MRDS;

Scratch; 12Blocks; Simulink; ROBO Pro; Arduino Studio and TRIK Studio. Найпоширенішими ж мовами програмування в

роботі вважаються такі: С++, Python, Pascal, JAVA та Scratch. Все програмне забезпечення аналізується за такими

критеріями: математичні вирази, обчислювальна модель, інтерпретація, автономне використання, генерація коду,

моделювання, налагодження, методичні посібники, безкоштовність, платформи, конструктори, ліцензія та

перспективи розвитку. Серед програмного забезпечення своїми можливостями відзначаються текстові засоби EV3 та

Arduino, а серед графічних – Simulink та LabView, оскільки ці програмні засоби зарекомендували себе потужними

середовищами розробки з доволі універсальними підходами створення програм у мобільній робототехніці.

Ключові слова: мобільний робот; програмне забезпечення; аналіз; мови програмування; система керування

__

Link to the publication

APA Jianjun, Wang, Chenjian, Dong, Kai, Wang, Zhicong, Chen, Rong, Xie, Weiping, Zhu, Andriy, Topalov, Oleksii,

Povorozniuk. (2023). Software analysis for mobile robots control programs. Management of Development of

Complex Systems, 53, 111–119, dx.doi.org\10.32347/2412-9933.2023.53.111-119.

ДСТУ Цзяньцзюнь Ван, Ченьцзянь Донг, Кай Ван, Чжицон Чен, Ронг Сє, Вейпін Чжу, Андрій Топалов, Олексій

Поворознюк. Аналіз програмного забезпечення для створення програм керування мобільних роботів.

Управління розвитком складних систем. Київ, 2023. № 53. С. 111 – 119, dx.doi.org\10.32347/2412-

9933.2023.53.111-119.

