Ynpaeninusa pozsumrxom cknaonux cucmem (53 — 2023) ISSN 2219-5300

DOI: 10.32347/2412-9933.2023.53.111-119
UDC 004.05

Jianjun Wang

Yunzhou (Yancheng) Innovation Technology Co., Ltd, China
https://orcid.org/0009-0000-8417-4099

Chenjian Dong

School of Automobile and Transportation, Yancheng Polytechnic College, Yancheng, China
https://orcid.org/0000-0003-3529-6529

Kai Wang

Yunzhou (Yancheng) Innovation Technology Co., Ltd, China
https://orcid.org/0009-0008-1175-6045

Zhicong Chen

Yunzhou (Yancheng) Innovation Technology Co., Ltd, China
https://orcid.org/0009-0001-2511-8289

Rong Xie

Wuhan University, China

https://orcid.org/0000-0001-9596-0562

Weiping Zhu

Wuhan University, China

https://orcid.org/0000-0001-7714-350X

Andriy Topalov

PhD, Associate Professor, Department of Computerized Control Systems
https://orcid.org/0000-0003-2745-7388

Admiral Makarov National University of Shipbuilding, Ukraine
Oleksii Povorozniuk

Postgraduate Student, Department of Computerized Control Systems
https://orcid.org/0000-0002-0455-9915

Admiral Makarov National University of Shipbuilding, Ukraine

SOFTWARE ANALYSIS FOR MOBILE ROBOTS CONTROL PROGRAMS

Abstract. The use of the software allows the mobile robot to control the working parameters: turn on and
off the mechanisms and devices, monitor the indicators of the sensors, perform various technological
operations (cutting, welding, painting, etc.), calculate the trajectory of movement depending on the working
surface, etc. Research in the field of robotics testifies to the high activity of scientific works on the creation
of high-precision and energy-efficient robotic systems in general for autonomous mobile robots by
improving control programs. The work is devoted to the review and analysis of the software for creating
control programs for mobile robots. The work presents a generalized structural diagram of a hierarchical
mobile robot control system, in which decentralized software processing of information takes place, and
separate software and hardware components are remote from each other. When building a mobile robot
control system, various robot programming environments are considered, which represent a wide range of
tools for creating various models and systems. Moreover, the issues of using graphic and text software
environments with high-level programming languages are considered. Development environments are
considered among the software complexes: LabView; NXT-G; Robolab; EV3-G; MRDS; Scratch;
12Blocks, Simulink; ROBO Pro; Arduino Studio and TRIK Studio. The following are considered the most
common programming languages at work: C++, Python, Pascal, JAVA and Scratch. All software is
analyzed according to the following criteria: mathematical expressions, computational model,
interpretation, stand-alone use, code generation, modeling, debugging, tutorials, free, platforms, designers,
license and development prospects. Among the software, EV3 and Arduino text tools stand out for their
capabilities, and Simulink and LabView among graphic tools, as these software tools have proven
themselves to be powerful development environments with fairly universal approaches to creating
programs in mobile robotics.

Keywords: mobile robot; software; analysis; programming languages; control system

© Jianjun Wang, Chenjian Dong, Kai Wang, Zhicong Chen, Rong Xie, Weiping Zhu,
Andriy Topalov, Oleksii Povorozniuk 111

Ynpaeninua mexnonociunumu npoyecamu

Problem statement

Compiling complex programs for robots includes
writing the software according to which the robot
operates. In robotics, software is considered as an area
that extends from the software of the robots themselves,
the software of the systems related to the robots, to the
software related to robotics as a whole and covers both of
the above mentioned types. Despite the existence of such
classifications, it is not always clear to which group one
or another type of software used in robotics should be
assigned [1-3].

The central core of the robot's software includes
programs written by the end user and interpreter software
that translates the user's programs into a language
understood by the controller. The software of the
controllers allows various systems to work, providing a
response to feedback signals. Robotic systems can output
information using graphics systems, which requires
special software, and controllers process signals in real
time, which requires significant computing power.
Moreover, the second-generation robots, based on the use
of sensory information (visual and tactile), have a much
larger volume of software for processing the information
received from the sensors.

Sensor devices (video cameras, sets of sensors) are
able to provide the feedback system with a large amount
of information, and one central processor will not be able
to process it. Therefore, in the processing process, there
is a multi-level at which information is processed by
processors with the appropriate software [4-7].

Therefore, robotics software is based on the
extensive use of various disciplines. Combination of
automated systems of design and management of
production processes. The complexity of the software
used in both systems is extremely high. Since robotics is
built on three foundations: the application of electronics,
mechanics, computer software. Programming and
robotics are generally closely related. More and more
scientists and manufacturers are investigating the
processes of writing high-precision and energy-efficient
software, as interest in process robotics grows, as does
investment in projects related to programming and
robotics.

The article aim

Existing programming environments are
developing quite quickly, and analytical publications
superficially highlight the important tasks of connecting
the control program with robotics and do not provide
generalized practical recommendations for using one or
another software depending on the task of the robot. The
purpose of this article is to analyze and formalize the
distribution of commercial and open tools for
programming mobile robots, taking into account the
technical features of writing programs.

Basic material

One of the fastest growing areas of robotics is
mobile robotics [8 — 13]. Mobile robot can be divided
into two categories: one is a remote-controlled robot, and
the other is a robot that can perform certain actions in an
autonomous mode. In most cases, the robot is controlled
by a human operator at the movement level, which
requires a person to constantly observe the robot and
quickly control its movements.

The mobile robot control system is presented in fig.
1. Software for the mobile robot control system should
solve the following tasks:

— Processing of sensory data (including data from
the interface with the operator) in order to collect
information about the robot and the environment around
it.

— Planning activities to understand the target task
and planning the sequence of subtasks necessary to
complete this task.

— Formation of such software trajectories of WRI
movement that would lead to the execution of a local
subtask by the robot (for example, arriving at a target
point in an environment with obstacles).

Formation of such setting actions on the actuators
of the robot, which would lead to the most accurate and
fast execution of the program trajectory of motion.

Operator interface |

Control system

Behavior control system

Information-
measuring system

Motion control system

Actuator control system

T

Robot sensors data r = \ Mobile

Figure 1 — Generalized block diagram
of the mobile robot control system

112

Ynpaeninusa pozsumxom cxnaonux cucmem (53 —

2023) ISSN 2219-5300

One of the features of building a control system for
an intelligent mobile robot is that it is built according to
a hierarchical multi-level principle, according to which,
with an increase in the hierarchical rank of a subsystem,
its degree of intelligence increases. The topmost link in
this hierarchy is the behavior control system, followed by
the motion control system, and the actuator control
system is the lowest link in this hierarchy. In addition to
the listed subsystems, the structure has an information-
measuring system, which must also have some
intellectual capabilities, and an interface with the
operator.

The behavior control system (strategic level) is
designed to form the appropriate behavior of the robot to
complete the task assigned to it. At the output, this system
generates target designation for the motion control
system: the target waypoint, the required state of the
robot drives, the commands for controlling the operating
modes of the information-measuring system.

The motion control system (tactical level) is
designed to plan such software trajectories of the robot's
movement that would bring the robot to the specified
target state in an environment with obstacles, taking into
account the dynamic characteristics of the robot. The
target state for this system is formed by the behavior
management system. At the output, this system generates
the required command value of the speeds of linear
movement, azimuthal rotation of the robot.

The actuator control system (drive level of the
control system) solves the tasks of controlling the
actuators of the robot. This system implements an
interface with the robot's hardware.

The information-measuring system is designed to
collect, process and convert sensory information into
signals that are convenient for use in the robot control
system. In this robot, the video image received from the
camera is converted into a set of parameters, on the basis
of which other subsystems make certain decisions.

The operator interface is an on-screen menu for
conducting a natural language text dialogue with the user,
as well as a manual control panel for the robot.

To create a robot control system, you can use
different programming environments. These
environments can be divided into two large groups - these
are visual and text-based programming environments.
Also, robot control environments are distinguished by
whether they are specialized in controlling a particular
robot or support a number of robots from different
manufacturers (Fig. 2).

One of the important features of working with text
languages is that you have to remember the syntax of the
language, keywords, parentheses, commas, and so on.
But with a visual programming language, it is easier to
determine which block is responsible for what and how
to build connections between them. Visual programming
is used not only for simple tasks, but also in quite

complex tasks. For example, in relationship editors in
relational databases, dataflow programming, program
designers, and so on [14 — 18].

During the development of any program, it is
assumed that it will develop over time — to receive new
functions and entities. Perhaps some parts may change
with an increase in the number of robot sensors. In visual
programming, the interface for manipulating graphic
objects is currently limited, but development is actively
underway to expand the work area, which will allow
creating complex programs. To manage complexity in
text programming, many concepts and architectural
approaches have come up. For example, object-oriented
programming, various architectural design patterns. If
you follow them, it will save the developer time and it
will be easier to scale the project.

Robot programming environments

A 4

Visual Text

A4 A4
Supporting for a

Specialized
range of robots

N .

- - Microsoft
NXT-G, etc.| | ThekStdion |1 Robotics,
etc. ete

* A4

S ting fi
Specialized HPPOTHNE ford
range of robots
A4 A4 \ 4
RobotC, Arduino, BricxCC,
etc. etc. etc.

Figure 2 — Examples of robot programming environments

C and C++ are #1 among robotics languages.
Although C++ is not so easy to work with because it
requires software to be compiled, it is still one of the most
reliable programming languages. It allows you to create
complex programs that follow a clear structure. Today,
C++ is arguably more useful in robotics than C.
However, the latter remains one of the most energy-
efficient programming languages. Python is a very
flexible and fast open source programming language.
It is probably one of the easiest, most popular and most
versatile languages. It is object-oriented programming
(OOP), completely connected with the development

113

Ynpaeninua mexnonociunumu npoyecamu

of artificial intelligence and virtual reality. Additionally,
there are a large number of free libraries for Python.
Python is useful in robotics because it is one of the main
programming languages in ROS (along with C++). But it
may become even more popular as more robotic
electronics support this language by default. Pascal is a
BASIC language, and is literally based on the BASIC
language. Most often, industrial robots are programmed
in the Pascal language. It is simple because it uses
structured programming and data structuring. Java is a
general-purpose object-oriented programming language
based on classes. It is designed to allow application
developers to build code once and then reuse it anywhere.
In other words, JAVA code can run on any JAVA-
enabled platform without the need for recompilation. In
addition, JAVA is a useful language in robotics and is
used in the creation of artificial intelligence. Scratch is
extremely popular among beginning roboticists. It is a
visual programming language, in essence its principle of
operation is to drag and connect blocks.

LabVIEW [19, 20] is a graphical G-language
software development environment created by National
Instruments in 1986. LabVIEW allows you to quickly
create applications for control, testing, measurement, and
more. This environment allows you to program in terms
of data flows and allows you to use various design
patterns to create applications, for example, it is possible
to apply the architecture of a state machine. LabVIEW
supports a large number of hardware platforms, provides
a huge set of libraries that contain tools for working with
complex mathematical structures, tools for creating
virtual instruments, computer vision algorithms, etc. For
the interaction of blocks, libraries provide a set of
different links that differ in the type of data transmitted
through them. The program created in the LabVIEW
environment is a virtual instrument (virtual instrument),
it is divided into two parts: a block diagram that describes
the logic of a virtual instrument, and a front panel that
describes the interface of the instrument. It is important
to note that the language compiler automatically
parallelizes code sections that have parallel blocks,
creating separate threads for their execution. The
possibilities of using this environment are great, there are
components that allow you to use this environment to
work with LEGO MINDSTORMS NXT/EV3 robotics
educational kits. LabVIEW allows you to interpret
programs and generate code from them to run programs
autonomously on a device.

Microsoft Robotics Developer Studio (MRDS)
[21]. MRDS Platform includes the visual programming
language Visual Programming Language (VPL) and a
simulated visual 3D environment. The visual
programming language the implementation of the
algorithm, but also the management of the complexity of
the project. In Visual Programming Language (VPL) is
offered as a means of describing robot behavior

algorithms for novice programmers, the C # language is
for professional ones. Writing a program in VPL consists
in choosing the appropriate components for solving the
problem and establishing a connection between them.

LEGO MINDSTORMS Education NXT-G [22]
is a graphical programming environment for the LEGO
Mindstorms NXT constructor. The environment is based
on the LabVIEW industrial environment and uses the G
data flow language. This software has an intuitive
interface, the creation of robot control programs
resembles the creation of flowcharts and is carried out
using special blocks placed on LEGO beams along the
axis of the sequence of actions. The order of program
execution is determined by the order of the blocks. NXT-
G automatic laces the blocks in the diagram physically:
execution obeys the order of the blocks, the data needed
by the following blocks must be explicitly connected by
the flow. The environment provides a rather large set of
blocks (one hundred and ninety-three). In NXT-G, there
is practically no support for mathematical expressions: to
specify complex expressions, you have to build a parse
tree in blocks. The advantage of the environment is that
it is distributed free of charge.

Robolab [23] is another robot programming
environment that is a simplified version of the LabView
industrial programming environment. The environment
uses a visual language that has a total of about four
hundred blocks. In order not to frighten a novice user
with a cumbersome palette, the environment has the
ability to select the level of use of the program. Levels
limit the size of the palette used, the first level, for
example, contains about twenty elements and only allows
you to substitute a block in the empty space allotted for
it. At the last level, the entire palette is available to the
user (the placement of blocks is not limited in any way).
The palette includes control blocks, blocks of various
arithmetic metrical actions (mathematical expressions
can be specified explicitly in C language), blocks of
variables, subroutines, work with threads of execution
(parallelization of execution), loops (implemented using
labels and jumps). Blocks in Robolab are shrouded in a
network of various "wires", various modifiers come
through them, corresponding to different types of data.
This makes it difficult to understand when working with
a large program. Another disadvantage is that the blocks
for interacting with different constructors are not
separated in any way. They are mixed, but not all
commands, for example, for the LEGO RCX can be used
with the LEGO NXT robot.

TRIK Studio [24] Another example of a
programming environment is the TRIK Studio robot
programming environment (see Figure 6). It allows you
to program several types of microcontrollers —- LEGO and
TRIK using a sequence of icons. In total, there are about
a hundred different blocks in the language that are
responsible for interaction with the robot and algorithmic

114

Ynpaeninusa pozsumrxom cknaonux cucmem (53 — 2023)

ISSN 2219-5300

and mathematical support. The environment has a
modern user interface. For the convenience of
programming, the blocks in the palette are divided into
groups according to The
programming language in TRIK Studio is completely
based on the control flow model, data flows are not used.

ROBO Pro [25] is the official programming
environment for the ROBO TX controller that controls
models assembled from the fischertechnik kit.
Programming in it is carried out in the language of block
diagrams. The language supports all major algorithmic
constructs and data types. The environment does not
satisfy the rest, "advanced" criteria. It is worth noting that
ROBO Pro is practically the only environment that
programs real robots in terms of block diagrams,
however, the system does not support programming of
any other devices, except for the ROBO TX controller.

12Blocks [26] is another Scratch-like tool for
programming Lego Mindstorms NXT and Arduino
robots, and other less popular platforms are available
(like Scribbler). The environment is cross-platform,
available for Windows, Linux and Mac OS X. It is
possible to execute programs on the Cogmation 3D
simulator, generate code from a diagram, and integrate
with ROS7. The language supports all the basic
algorithmic constructions and data types, it is possible to
extract code into a subroutine. There are opportunities for
autonomous execution of the program by the robot,
debugging the program on a computer with sending
commands to the robot, as well as plotting graphs from
sensors in real time. The negative aspects include the
following: 12Blocks has poor methodological support,
there are practically no communities around the
environment on the Internet (however, there is a set of
English-language video instructions for using the main
features of the environment). Also, the system does not
have any means of automatic checking of tasks. 12Blocks
is distributed under a commercial license.

Scratch [27] is an open source cross-platform
visual programming environment developed at the
Massachusetts Institute of Technology to teach students
the basics of computer science. Programming is carried
out by connecting blocks, resembling mosaic elements.
Scratch allows you to draw and program simple graphic
objects called sprites. In its “pure” form, Scratch does not
allow you to program robots, however, there are a large
number of extensions and environments based on Scratch
that allow you to program Lego WeDo, Lego NXT, Lego
EV3 and Arduino robots. Among such "independent”
projects created on the basis of Scratch, we mention S4A
and mBlock for Arduino programming and Enchanting
for NXT programming. Common advantages for
Scratch-like environments are ease of learning, an
attractive user interface, openness and freeness, the
ability to debug remote control of the robot from a

their functional value.

computer and download code for offline execution (the
latter is not available in all Scratch systems). There is also
the possibility of executing a program on a virtual sprite,
which, according to our criteria, can be considered as
debugging on a simulator (however, there is no question
of the proximity of such a simulation to reality). The
negative aspects include the lack of "advanced" means of
teaching programming. For example, there is no
possibility of generating readable code from a visual
model, which could greatly facilitate the transition of
students to textual languages. Algorithmic aspects are not
fully supported, for example, there is no support for
arrays of dimension greater than 1. There are also no tools
for automatically checking the correctness of task
solutions.

LEGO MINDSTORMS Education EV3 [28]
software16 for LEGO Mindstorms EV3 sets solves some
of the problems of the NXT-G environment, such as
setting math formulas. The environment supports LEGO
NXT programming (although there are known
compatibility issues). EV3 software provides the user
with a small set of blocks for programming, execution is
subject to an explicitly defined flow of control, which
partially uses the data transfer model (see Figure 4). The
language provided by the environment uses fifty-three
different blocks that are responsible for controlling
various sensors, sensors, actuators, controller buttons, for
implementing mathematical functions, as well as
algorithmic constructions: fork, loop, switch, etc. The
environment does not support all operating systems (for
example, there is no support for Linux).

Simulink [29] is a graphical programming and
simulation environment that uses block diagrams. The
environment was created by MathWorks. The principles
of its work are similar to LabVIEW. Simulink allows you
to simulate various dynamic models, conduct simulation
and automatic code generation, testing and verification.
Provides many libraries with various blocks, allows you
to interact with the MATLAB package, use algorithms in
models and export simulation results for further analysis.
Using the Robotics System Toolbox13, Simulink has the
ability to develop control programs for autonomous
robots. The environment provides an extensive set of
libraries containing various blocks (about two hundred)
for verification, interaction with sensors and other robot
devices, for working with mathematical operations, and
others. Like LabVIEW, Simulink is based on a data flow
model, which is better suited for robot programming due
to its reactive nature.

Arduino [30] is a robot programming environment
Arduino. The Arduino development
environment interface contains the following main
elements: a text editor for writing code, a message area,
a text console, a toolbar with traditional buttons, and a
main menu. This framework is written in Java and is

based on

115

Ynpaeninua mexnonociunumu npoyecamu

based on Processing and other open source software.
Unlike the online version of the code editor (Arduino
Web Editor), the desktop version can be used when there
is no internet. This software allows the computer to
communicate with the Arduino to both transfer data and
upload code to the controller. The Arduino programming

language is based on C / C ++, linked to the AVR Libc
library and allows you to use any of its functions.

All the listed software are evaluated according to
the criteria and the results of the comparison of the
environments are given in the table.

Table — Comparison of visual programming environments for robots

5ol 29 gl g8 | 2| E |g| g |us
S S & S = 2 o S B x 3
5 Z 2 n | = A 8 s el 24 = &
Mathematical
. + - + + + + + + + + +
expressions
Computation D p | ¢ | p|D C C D |cC D C
model
Interpretation + + + + + + + + + + +
Standalone
+ + + + - + + + + + +
use
Code C,
eneration Cand < JavaScrip
g C - - ~ | c# - HDL, | - | ArduinoC
etc. t, F# and
and etc.
etc.
Simulation _ _ _ _ + + + + _ + +
Debugging + - + + + + + + + + +
Methodologic
. + + + + - + - + + + -
al aids
Free - + - + + + - - + + +
Platforms? WLM | WM | WM | WM | W | WLMw | WLM | WLM | W WLM WLM
Constructors® NE N N NE Nf NEA NAS EA f A NET
License* P P P P P 0 P P P 0 0
Development + . . + . + - + + + +

IC means for "control flow", D — for "data flow".

2For lack of space, abbreviations are used. Each letter corresponds to the operating system. W means

“Windows”, M — “Mac OS X”, L — “Linux”, w — “web”.

3For lack of space, abbreviations are used. Each letter corresponds to a constructor. N means “NXT”, E —

“EV3”, A — “Arduino”, f — “fischertechnik”, T —
40 means “open”, P — “proprietary”.

Conclusions

The use of the software allows the mobile robot to
control the working parameters: turn on and off the
mechanisms and devices, monitor the indicators of the
sensors, perform various technological operations
(cutting, welding, painting, etc.), calculate the trajectory
of movement depending on the working surface, etc.
High-quality software allows you to increase the
accuracy of work and the efficiency of the use of energy
resources.

The article presents a comparative analysis of a
large number of currently popular environments for

“TRIK”.

programming mobile robots. After considering all the
tools listed above, it becomes clear that programming
environments for robots, as a rule, are a small set of text
or graphic blocks. Based on these blocks, programs are
created to solve typical robot tasks using an easy-to-
understand execution model — the control flow model
(perhaps with partial use of the model's data flow). That
is, most programming environments are primarily based
on the execution model in terms of data flows, where the
useful work of a block is performed only when data is
received.

Of course, the evaluation of the software
environment depends on the field of use of the mobile

116

Ynpaeninusa pozsumrxom cknaonux cucmem (53 — 2023)

ISSN 2219-5300

robot and the technical task. It is necessary to take into
account the peculiarities of the applied field, the
characteristics of the mobile robot and the principles of
its operation. At the same time, the most important
quality of programs is, on the one hand, the ability to
process a large flow of data in real time, and on the other
hand, comprehensibility as a property of the program to
minimize the necessary intellectual effort to understand
it. All presented software environments cope with the
first part, but the question remains only in the scalability
of data processing. On the other hand, it should be noted
that there are more and more software environments with
easy-to-write programs and a high-quality interface. In
recent decades, programming environments have
adopted and facilitated many actions that programmers

often wuse: project navigation, code highlighting,

developer hints, and more. Thus, EV3 and Arduino
programming environments stand out among text
languages, and Simulink and LabView among graphic
ones, since these software tools, according to table, stand
out as powerful development environments with fairly
universal approaches to creating control programs for
mobile robots.

Financing

This study is financially supported by the National
High Level Foreign Experts Introduction Project
(G2022014116L) and Yancheng Key Technology
Unveiling Project (Research, development and
application of intelligent unmanned boat and cluster
control technology).

References

1. Banyasad, Omid. (2000). A Visual Programming Environment for Autonomous Robots.
2. Na, Liu, Gerasin, Oleksandr, Topalov, Andriy & Karpechenko, Anton. (2021). Analysis of tasks of monitoring and

automatic control of agricultural mobile robot. Management of Development of Complex Systems, 47,

dx.doi.org\10.32347/2412-9933.2021.47.174-179.

174-179,

3. Gerasin, O. S. (2014). The analysis of features multi-purpose mobile robots. Scientific papers. Computer Technology

Series, 50, 238, 25-32. [in Ukrainian].

4. Kozlov, O. V., Gerasin, O. S., Kondratenko, G. V. (2017). Complex of tasks of monitoring and automatic control of
mobile robots for vertical movement. International Journal “SHIPBUILDING & MARINE INFRASTRUCTURE”, 2(8), 77-87.

5. Morozovskiy, V. T. (1970). Multi-loop automatic control systems, Moscow, Energiya Publisher, 288. [in Russian].

6. Topalov, A. M. (2022). Analysis of microelectronic digital devices for collecting, processing and transmitting data to
robotic systems. Materials of the all-Ukrainian scientific and practical conference of young scientists and students "Information
technologies in education, technology and industry" on October 13, Ivano-Frankivsk, 117-119.

7. Portsmore, M. (1999). ROBOLAB: Intuitive Robotic Programming Software to Support Life Long Learning. APPLE

Learning Technology Review..

8. Biggs, G., MacDonald, B. (2003). A survey of robot programming systems. Proceedings of the Australasian conference

on robotics and automation, P. 1-3.

9. Simpson, Jonathan, Jacobsen, Christian L., Jadud, Matthew C. (2006). Mobile robot control. Communicating Process

Architectures, 225.

10. Simpson, Jonathan, Jacobsen, Christian L. (2008). Visual Process-Oriented Programming for Robotics. CPA, 365-380.
11. Posso, Jeremy C., Sampson, Adam T., Simpson, Jonathan. (2011). Process-Oriented Subsumption Architectures in

Swarm Robotic Systems. CPA, 303-316.

12. Simpson, Jonathan, Ritson, Carl, Toward, G. (2009). Process Architectures for Behavioural Robotics. CPA, 375-386.
13. Brooks, Rodney [et all]. (1986). A robust layered control system for a mobile robot. Robotics and Automation, IEEE

Journal, 2, 1, 14-23.

14. Connell, Jonathan H. (1989). A colony architecture for an artificial creature: Tech. Rep.: DTIC Document.

15. Arkin, Ronald C. (1987). Motor schema based navigation for a mobile robot: An approach to programming by behavior.
Robotics and Automation. Proceedings. 1987 IEEE International Conference on IEEE. T. 4. 1987. P. 264-271.

16. Rosenblatt, Julio K. (1997). DAMN: A distributed architecture for mobile navigation. Journal of Experimental &

Theoretical Artificial Intelligence, 9, 2-3, 339-360.

17. Diprose, James P, MacDonald, Bruce A, Hosking, John G. (2011). Ruru: A spatial and interactive visual programming
language for novice robot programming. Visual Languages and Human-Centric Computing (VL/HCC), 2011 IEEE Symposium on

IEEE. 2011. P. 25-32.

18. Johnston ,Wesley M., Hanna, JR, Millar, Richard J. (2004). Advances in dataflow programming languages. ACM

Computing Surveys (CSUR), 36, 1, 1-34.

19. Hils, Daniel D. (1992). Visual languages and computing survey: Data flow visual programming languages. Journal of

Visual Languages & Computing, 3, 1, 69-101.

20. Powers, Kris, Gross, Paul, Cooper, Steve. (2006). Tools for teaching introductory programming: what works? ACM

SIGCSE Bulletin, 38, 560-561.

117

Ynpaeninua mexnonociunumu npoyecamu

21. Kodosky, Jeffrey, MacCrisken, Jack, Rymar Gary. (1991). Visual programming using structured data flow. Visual
Languages, 1991, Proceedings. 1991 IEEE Workshop on / IEEE. P. 34-39.

22. Gomez-de Gabriel, Jesis M., Mandow, Anthony, Fernandez-Lozano, Jesus. (2011). Using LEGO NXT Mobile Robots
With LabVIEW for Undergraduate Courses on Mechatronics. IEEE Trans. Educ., 54, 1, 41-47.

23. Jackson, Jared. (2007). Microsoft robotics studio: A technical introduction. Robotics & Automation Magazine, IEEE, 14,
4, 82-87.

24. Kelly, James Floyd. (2010). Lego Mindstorms NXT-G Programming Guide. Apress.

25. Cyr, Martha. (2001). Robolab N. Software Reference Guide. Moscow: INT [translation].

26. Lytvynov, Yu. V., Kirylenko, Ya. A. (2015). TRIK Studio: an environment for teaching programming with the use of
robots. V All-Russian conference "Modern technological education: from computer to work" (collection of theses), p. 5-7.

27. Robot Pro URL:https://apps.apple.com/ru/app/robo-pro-coding/id1569643514

28. Robot Operating System, URL: http://www.ros.org/

29. Resnick, M., Maloney, J., Monroy-Hern andez, Scratch A. (2009). Programming for all. Communications of the ACM,
52,11, 60-67.

30. Araujo, Hernando Le6n, Agudelo, Jestis Gulfo, Crawford, Richard, Vidal, Jorge, Ardila, Uribe. (2022). Autonomous
Mobile Robot Implemented in LEGO EV3 Integrated with Raspberry Pi to Use Android-Based Vision Control Algorithms for
Human-Machine Interaction. Machines, 10(3), 193.

31. Dong, C., Povorozniuk, O., Topalov, A., Wang, K., Chen, Z. (2023). Development of the control system for LEGO
Mindstorms EV3 mobile robot based on MATLAB/Simulink elements. Technology Audit and Production Reserves, 1 (2 (69)), 30—
35. doi: https://doi.org/10.15587/27065448.2023.274846.

32. Oltean, S. E. (2019). Mobile Robot Platform with Arduino Uno and Raspberry Pi for Autonomous Navigation. Procedia
Manufacturing, 32, 572-577.

The article was received by the editorial board 29.03.2023

I3aubIBI0OHL Ban

Yunzhou (Yancheng) Innovation Technology Co., Ltd, Kurait
https://orcid.org/0009-0000-8417-4099

Yeubussaub JoHr

[Tkosa aBTOMOOLIS Ta TpaHCTIOPTY, SIHPUCHCHKHUIN MO TeXHIYHUIT KonepK, HbueH, Kutait
https://orcid.org/0000-0003-3529-6529

Kaii Ban

Yunzhou (Yancheng) Innovation Technology Co., Ltd, Kuraii
https://orcid.org/0009-0008-1175-6045

Ysxkuuon Yen

Yunzhou (Yancheng) Innovation Technology Co., Ltd, Kurait
https://orcid.org/0009-0001-2511-8289

Ponr Ce

VYxanbscbkuii yHiBepcuTeT, Kurait

https://orcid.org/0000-0001-9596-0562

Beiinin Yy

Vxanbcbkuit yHiBepcutet, Kurait,

https://orcid.org/0000-0001-7714-350X

Amnppiii Tonanos

Kanaunar TexHIYHUX HAYK, JOLEHT, JOLEHT Kadeapu KOMII IOTePU30BaHUX CUCTEM YIIPABIIHHS,
https://orcid.org/0000-0003-2745-7388

Hayionanenuii ynigepcumem xopabne6yodysanns im. aomipanra Maxaposa, Ykpaina
Ounexciii IToBopo3Hiok

AcmipaHT kadeapy KOMIT I0TepU30BaHNX CUCTEM YNpaBIiHHS, https://orcid.org/0000-0002-0455-9915
Hayionanenuii ynigepcumem xopabne6yodysanns im. aomipana Maxaposa, Ykpaina

AHAJII3 TTPOI'PAMHOI'O 3ABE3IIEYEHHS
JJIs1 CTBOPEHHS ITPOI'PAM KEPYBAHHA MOBLJIBHUX POBOTIB

Anomauia. Buxopucmanna npoepamnozo 3abe3neuenuss 00nomazae MoOILTbHOMY pobOmy KOHMPOMO8Amu poooyi
napamempu: 6MuKamu md GUMUKAMU MEXAHIZMU I NPUCMPOL; CMedCUumu 3a NOKA3HUKAMU OamuuKie, GUKOHY8amu pi3Hi
mexHono2iuni onepayii (pizanus, 36aploéans, Gapoyeants mowjo); po3paxosysamu Mpackmopiio pyxy 3aiexcHo 6i0 pobouol
nosepxui mowo. Jocnioscenus ¢ obracmi pobomomexHiku ciouams HPoO BUCOKY AKMUBHICIb HAYKOBUX POOImM 3i CMEOpeHHs

118

Ynpaeninusa pozsumrxom cknaonux cucmem (53 — 2023) ISSN 2219-5300

BUCOKOMOYHUX | enepeoehekmusHux pobOmMomexHiuHux cucmem O AGMOHOMHUX MOOITbHUX pOOOMIE WAAXOM B0OCKOHANEHHS
Kepylouux npocpam. Poboma npucesuena poszenady ii ananizy npozpamno2o 3abesneyenms CMEOPEHHs Kepylouux npoepam
MobinbHUx pobomie. Y pobomi npeocmaeneno y3azanvHeny CMpYKMypHY cxXemy I€papXiunoi cucmemu Kepy@auHs MOOINbHUM
pobomom, 6 5Kl 8I00YBAEMbCs OeyeHmMpPaniz0eane NpPoSpamHe ONpayioéanHs iHgopmayii, a okpemi npoepamHo-anapammi
Komnonenmu 8iooaneni 00Hi 6i0 00Hux. Ilpu nobyoosi cucmemu Ynpagiinms MoOiIbHO20 pOOOMA pO32NA0AIOMbCA PIi3Hi
cepedosuwa npozpamyeants pobomis, AKi npeocmasiaions WUPOKUil iIHCMpyMenmapiii O CMeopeHHs PI3HUX Mooenell i cucmem.
Posenaoaromscs numanns 3acmocysants epagiunux ma mekCmogux npoepaMHUX cepedosuly 3 MOBAMU NPOSPAMYBAHHSL BUCOKO20
pisna. Ceped npocpamuux KOMNIeKcie posenadaromuvcs cepedoguwya pospooku: LabView; NXT-G; Robolab; EV3-G; MRDS;
Scratch; 12Blocks; Simulink; ROBO Pro; Arduino Studio and TRIK Studio. Hatinowupeniwumu e Mosamu npocpamysants 6
pobomi esaxcaromvca maki: C++, Python, Pascal, JAVA ma Scratch. Bce npoepamne 3abe3neuenus ananizyemvca 3a maxumu
Kpumepiamu: MamemMamudni upasu, 0OYUCTIO8ATbHA MOOeNb, IHMepnpemayis, agmoHOMHe SUKOPUCMAHHA, 2eHepayis Kooy,
MOOENIOBAHHS, HANA2OONCEHHSA, MeMOOUYHi NOCIOHUKYU, OE3KOWMOSHICMb, NAAm@OpMu, KOHCMPYKMOPU, JNiyeHsia ma
nepcnexmugu po3sumky. Ceped npozpamnozo 3abe3neuents c80iMu MOJICIUBOCHAMY Gi03HAUAIOMbCA mekcmosi 3acodou EV3 ma
Arduino, a ceped epagiunux — Simulink ma LabView, ockinbku yi npoepammui 3acobu 3apekomenoysanu cebe nomydCHUMU
cepedosuamu po3pooKu 3 0080i YHIBEPCANbHUMU NIOX00AMU CINBOPEHHA NPO2PAM Y MOOINbHIL pOOOmMOmexHiyi.

Knrwuogi cnosa: modinenuii po6om; npozpamue 3ade3nevenna; ananiz; Moeu npozpamyeanHsa; CUcmema Kepysanns

Link to the publication

APA Jianjun, Wang, Chenjian, Dong, Kai, Wang, Zhicong, Chen, Rong, Xie, Weiping, Zhu, Andriy, Topalov, Oleksii,
Povorozniuk. (2023). Software analysis for mobile robots control programs. Management of Development of
Complex Systems, 53, 111-119, dx.doi.org\10.32347/2412-9933.2023.53.111-119.

JIACTY 1zsap3t08s BaH, Uenbisup [donr, Kaii Ban, Yxunon Yen, Porr Ce, Beiinin YWxy, Anapiit Tonanos, Onekciit
[ToBOpo3HIOK. AHaji3 MPOrpaMHOro 3a0e3MeueHHs ISl CTBOPEHHS MpOrpaM KepyBaHHS MOOLTBHUX POOOTIB.
VYnpasninua poseumkxom cknaonux cucmem. Kwuis, 2023. Ne 53. C. 111 — 119, dx.doi.org\10.32347/2412-
9933.2023.53.111-119.

119

