Ynpaeninus pozeumxom cknaonux cucmem (55 —2023)

ISSN 2219-5300

DOI: 10.32347/2412-9933.2023.55.92-97

UDC 004

Alpert Maksym
PhD Student, Department of Information Systems and Technologies, Attps://orcid.org/0000-0002-8938-1473
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

Onyshchenko Viktoriia

Professor

of Department, Guarantor of the Doctor of Philosophy ESP Information Systems and Technologies,

https.//orcid.org/0000-0002-3126-2260
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

FINDING THE BEST SHORTEST PATH ALGORITHM FOR SMART SUITCASE

Abstract. Smart suitcases are a revolutionary new breed of travel accessory that utilize sophisticated
technology for enhanced convenience and ease of journeying. These suitcases are equipped with a
multitude of advanced features, such as internet connectivity, infrared sensors, inbuilt algorithms to bypass
obstacles and an accompanying mobile app designed to track the belongings' owner. A key component lies
in realizing this technology in the selection of an appropriate algorithm to calculate shortest paths through
challenging environments. In general, there are four main classes of algorithm that may be considered as
candidates: Dijkstra's algorithm, A-Star (A%*), Bi-Directional A-Star (BiAd*) and Rapidly-exploring random
tree (RRT). Each offers its own advantages and limitations regarding performance, memory requirements
and accuracy, which must be taken into account if it is to fulfill the purpose effectively. Moreover, these
smart suitcases boast infrared sensors which allow them detect and avoid obstacles present in their paths
via infrared sensors that reflect off nearby objects. Base information gathered by the sensors. Then filtered
through an internal algorithm that distinguishes the best possible method for escape from indicated
obstacle. Overall, smart suitcases signify a cutting-edge revolutionizing trend likely bound to captivate

travelers across all types who seek effectiveness and efficiency during embarkment journeys.
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Introduction

The development of smart suitcase technology has
opened up many possibilities for travelers, allowing them
to relish in the convenience and comfort that this new
style of luggage provides. Of course, one important factor
of a successful journey is arriving at your destination in
the most efficient way possible. Finding the best shortest
path algorithm for these types of suitcases is primary
task. This paper seeks some existing algorithms used for
route optimization and propose an ideal approach that
could be implemented in the latest iterations of smart
suitcase technology.

Finding the best shortest path algorithm for a smart
suitcase has become an important consideration. The
need to remain agile and efficient in travel is unlikely to
dissipate any time soon, so having a reliable way of
navigating from one place to another in the quickest
possible time is important. There are several algorithms
that can be used for this purpose. One such example is
Dijkstra's algorithm. However, it may not necessarily be
the most suitable approach for certain scenarios due to its
complexity and applicability only on weighted graphs
with non-negative weights. Therefore, other options
should also be taken into account when conducting

Dijkstra's algorithm; A-Star; Bi-Directional A-Star;

research on distinctive pathfinding techniques that could
fit even more specific scenarios involving multiple trips
between various locations.

Graph search algorithms are one possibility for
route optimization such as Dijkstra’s shortest path
algorithm. This method consists of building a connected
graph based on nodes/locations along with their distances
apart from each other before traversing it to determine the
most efficient route depending on user preferences or
other factors like time or budget constraints. The
advantage lies in its ability to maximize speed while
minimizing cost. Despite its effectiveness, this particular
method can be limited when considering more than two
dimensions (i.e., factors outside just distance) when
trying to calculate the best route(s).

Dijkstra’s  algorithm demonstrates the best
characteristics overall when dealing with larger graphs
containing non-overlapping regions. On the other hand,
A-Star (A*) provides effective optimization techniques
viable under a moderate computational resources’
constraint. But it still requires additional heuristics
incorporated  beforehand, either manually or
automatically via machine learning constructions, to
generate  trajectories accurately and efficiently.
Otherwise, it will consume an excessive amount of space
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and energy, potentially affecting battery life negatively
and significantly, which is not desirable, particularly
concerning the portability factor. There can be better
alternatives in the context to avoid such issues arising
given the possibility that the landscape is uncertain in
advance and may not be properly handled by the situation
arising.

The A-Star Search Algorithm has been a prevalent
solution among many developers as it combines
characteristics of both breadth-first search and depth-first
search while dedicating effort towards achieving optimal
paths by keeping track of cost associated with each node
up until its destination point. Furthermore, Bi-Directional
A-Star  Algorithm (BiA*) leverages bidirectional
searches along with heuristic estimates alongside A-
Star's same principles; eliminating redundant routes and
staying optimally focused on only those paths deemed
necessary. Thus, further improving upon the performance
and accuracy of typical A-Star implementations out there
that don't always guarantee results due to lack diligence
or inadvertent overlooks during execution cycles.
Otherwise, there are mistaken assumptions regarding
effective navigation sequences.

Objective of the paper

Four different algorithms (A*, BiA*, Djikstra’s and
RRT) are investigated and compared for finding the
shortest path in the context of a smart suitcase. The paper
aims to evaluate the effectiveness and performance of
these algorithms in enabling the smart suitcase to
navigate efficiently through various environments while
avoiding obstacles. By conducting a comprehensive
analysis and comparison of the algorithms, the objective
is to determine the most suitable algorithm that can be
employed in the smart suitcase to ensure optimal path
planning and efficient movement.

Approach for choosing basic technology
for creation of smart suitcase

Let's conduct analysis and make comparison with
other solutions for smart suitcases.

The article The Design of Smart Suitcase [1]
suggests using image recognition to determine the
distance between a suitcase and a person. If the suitcase
with a camera detects that the captured image of a person
is too large, it will perform a slow-down action.
Moreover, when the target pixel is too large and the
relative position of the target to the environment remains
the same, the suitcase will automatically stop to avoid
collision. Also, a software application is additionally
used, which can notify about the loss of communication.

In the article Smart Luggage Carrier system with
Theft Prevention and Real Time Tracking Using Nano
Arduino structure [2], it is proposed to use ultrasonic
sensors that send sound waves, and they will calculate the
distance between the bag and the person by collecting
reflected waves when it hits an obstacle.

The Smart Luggage Carrier article [2] suggests
using infrared sensors to avoid obstacles. The suitcase
determines the value of the distance to the object using
IR sensors.

The article Smart Airline Baggage Tracking and
Theft Prevention with Blockchain Technology offers a
solution for tracking baggage using RFID tags and
blockchain technology. Intelligent data management
provides an integrated deployment and monitoring
service. Collaboration technology is implemented to
support end-to-end tracking and alerts.

The article Luggage Theft Identification And Smart
Lock Using Face Recognition [3] uses facial recognition
technology to avoid theft.

In the article [4] unmanned ground vehicle is used
to detect obstacles such as potholes but the decision of
avoiding is on operator.

All these solutions are not automated and they are
controlled by human. In my future realization I will use
not only camera to recognize but also one of proposed
algorithm to avoid obstacles.

Careful comparison of A*, BiA*,
Dijkstra’s and RRT algorithms

Let's examine the selected algorithms in more
detail. We will delve deeper into their characteristics and
functionalities.

Completeness: All four algorithms are complete,
meaning they will always find a path if one exists.

Optimality: A*, BiA*, and Dijkstra's algorithms are
all optimal. It means that they will always find the
shortest path if one exists. RRT is not optimal, as the path
it finds may not be the shortest.

Time Complexity: A*, BiA*, and Dijkstra's
algorithms have the same worst-case time complexity of
O(b?), where b is the branching factor and d is the depth
of the solution. BiA* can be faster than A* and Dijkstra's
algorithm in some cases, as it searches from both the start
and target nodes simultaneously, which can reduce the
number of nodes expanded.

Space Complexity: A*, BiA*, and Dijkstra's
algorithms have the same worst-case space complexity of
O(b?), where b is the branching factor and d is the depth
of the solution. BiA* requires more space than A* and
Dijkstra's algorithm because it needs to keep track of
nodes from both the start and target nodes.

Use Case: A*, BiA*, and Dijkstra's algorithms are
best suited for finding paths in static environments,
where the obstacles do not move frequently. Dijkstra's
algorithm is especially useful when all edge weights are
non-negative. RRT is designed for dynamic
environments, where the obstacles move frequently and
the path needs to be recalculated often.

The use case of A* is finding paths in static
environments. The purpose of BiA* is finding paths in
static environments, faster than A* in some cases.
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Djikstra’s algorithm use case is finding paths in
static environments, when all edge weights are non-
negative.

RRT is used to sampling-based planning in dynamic
environments, suitable for high-dimensional spaces.

Table 1 — Comparison of A*, BiA*¥,
Dijkstra’s and RRT algorithms

Algorithm A* BiA* | Dijkstra's | RRT
Completeness | Yes Yes Yes Yes
Optimality Yes Yes Yes No
Time d (@2 d .

Complexity O(bY) | O(Dd'Y?) O(b%) Varies
Space d d g .

Complexity O(b%) O(b%) Oo(b%) Varies

Branching factor is marked as “b”. It’s the average
number of child nodes for each node in the search tree.
Depth of the solution is marked as “d”, which is the
number of steps required to reach the target node from
the start node. The depth of the solution represents the
length of the shortest path between the start and target
nodes in pathfinding problems. “b%” represents the worst-
case time and space complexity for the algorithms. The
worst-case time complexity refers to the maximum
amount of time the algorithm may take to find the
solution, while the worst-case space complexity refers to
the maximum amount of memory the algorithm may use
while searching for the solution.

The time and space complexities can vary for RRT
algorithm depending on the specific implementation and
the characteristics of the environment.

The summarized results are presented in the table 1,
providing a concise overview of the performance metrics
of each algorithm. This table allows for easy comparison
and identification of the algorithm that best meets the
criteria for optimal pathfinding in a static obstacle
environment.

Detailed comparison of A*, BiA*,
Dijkstra’s and RRT algorithms

A* is a popular pathfinding algorithm that uses a
heuristic function to guide its search towards the target
node. The heuristic function estimates the distance
between a given node and the target node, and the
algorithm uses this information to prioritize nodes that
are closer to the target. A* expands the node with the
lowest estimated total cost, which is the sum of the actual
cost from the start node to the current node (known as the
g-value) and the estimated cost from the current node to
the target node (known as the h-value).

A* algorithm operates by exploring the search
space using a combination of heuristic estimates and cost
values, aiming to find the most efficient path from the
start node to the goal node.

The A* algorithm begins by initializing the open list
and closed list. The starting node is added to the open list.
As long as the open list is not empty, the algorithm
continues to iterate. It selects the node with the lowest
cost from the open list, checks if it is the end node, and
returns the path if so. The current node is then moved
from the open list to the closed list. For each neighbor of
the current node, if the neighbor is not traversable or
already in the closed list, it is skipped. If the neighbor is
not in the open list, it is added to the open list with its
parent set to the current node. Otherwise, the algorithm
checks if the path to the neighbor from the current node
is shorter than the previous path. If it is, the neighbor's
parent and f score are updated. If there is no path from
the start node to the end node, the algorithm returns
failure.

Strengths:

— A¥* is complete and optimal if the heuristic
function is admissible and consistent;

— it can be very efficient in practice, especially if
the heuristic function is well-designed and the search
space is not too large;

— it can be easily modified to handle different
types of search spaces, such as grids or graphs.

Weaknesses:

— A* can be slow if the heuristic function is not
well-designed or if the search space is too large;

— it can be memory-intensive if the search space is
too large, as it stores all of the nodes it expands in
memory;

— it is not well-suited for dynamic environments
where the obstacles move frequently.

BiA* is a bidirectional version of A* that
simultaneously searches from both the start node and the
goal node. The algorithm terminates when the two search
trees meet in the middle, which means that a path has
been found. BiA* can be faster than A* in some cases
because it expands nodes from both ends of the search
space, which can reduce the number of nodes that need
to be expanded overall.

The BiA* algorithm begins by initializing two open
lists, one for the start node and one for the end node. The
start node is added to the start open list, and the end node
is added to the end open list. While both open lists are not
empty, the algorithm proceeds. It selects the node with
the lowest f cost from the start open list and checks if it
is in the end closed list, returning the path if so. The
current node is then moved from the start open list to the
start closed list. For each neighbor of the current node, if
the neighbor is not traversable or already in the start
closed list, it is skipped. If the neighbor is not in the start
open list, it is added to the start open list with its parent
set to the current node. Otherwise, the algorithm checks
if the path to the neighbor from the current node is shorter
than the previous path and updates the neighbor's parent
and f score accordingly. These steps are repeated for the

94



Inghopmayitini mexnonozii ynpasiinms

end open list. If there is no path from the start node to the
end node, the algorithm returns failure.

Strengths:

— BiA* is complete and optimal if the heuristic
function is admissible and consistent;

— it can be faster than A* in some cases, especially
if the search space is relatively small or the path is easy
to find;

— it can be memory-intensive, but it requires less
memory than A* because it only needs to store the nodes
from one search tree at a time.

Weaknesses:

— BIiA* can be slower than A* in some cases,
especially if the path is difficult to find or the search
space is large;

— itrequires more bookkeeping than A* because it
needs to maintain two separate search trees;

— like A*, it is not well-suited for dynamic
environments where the obstacles move frequently.

Dijkstra's algorithm is a classic pathfinding
algorithm that finds the shortest path between the start
node and all other nodes in the search space. It works by
starting at the start node and iteratively expanding the
node with the lowest cost. The algorithm stops when it
reaches the goal node or when all nodes in the search
space have been explored.

To find the shortest path using Dijkstra's algorithm,
the starting node is initialized with a distance of 0 and
added to the unvisited set. While the unvisited set is not
empty, the algorithm continues. It selects the node with
the lowest distance from the unvisited set and checks if it
is the end node, returning the path if so. The current node
is then moved from the unvisited set to the visited set. For
each neighbor of the current node, if the neighbor is not
traversable or already in the visited set, it is skipped. The
algorithm calculates the distance from the starting node
to the neighbor and updates the neighbor's distance if it
is lower than the current distance. The neighbor's parent
is set to the current node. If there is no path from the start
node to the end node, the algorithm returns failure.

Strengths:

— Dijkstra's algorithm is complete and optimal if
all edge weights are non-negative;

— it canbe faster than A* in some cases, especially
if the heuristic function is not well-designed or the search
space is relatively small;

— it is memory-efficient, as it only needs to store
the nodes that have been expanded.

Weaknesses:

— Dijkstra's algorithm can be slow if the search
space is too large or the heuristic function is well-
designed;

— it is not well-suited for dynamic environments
where the obstacles move frequently.

RRT is a popular algorithm for motion planning in

dynamic environments, but it sacrifices completeness
and optimality for the ability to handle complex and
changing environments. It is commonly used in robotics
and autonomous systems for generating feasible paths
considering obstacles and dynamic constraints.

To execute the Rapidly-exploring Random Trees
(RRT) algorithm, an empty tree is initialized with the
start node as the root. While the algorithm is running, it
randomly samples a point in the search space and
identifies the nearest node in the tree to that point. The
algorithm extends the tree by creating a new node from
the nearest node towards the sampled point, adhering to
the maximum distance or step size. If the new node is
collision-free and not within an obstacle, it is added to the
tree and connected to the nearest node. This process of
sampling, finding the nearest node, extending the tree,
and adding nodes continues until the maximum number
of iterations or a termination condition is met. If the
termination condition is reached without the goal node
being reached, the algorithm returns failure. However, if
the goal node is reached, the path from the goal node to
the start node is traced by following the connections in
the tree. Ultimately, the algorithm returns the path from
the start node to the goal node.

Strengths:

— RRT is particularly effective
dimensional and complex search spaces;

— it can handle dynamic environments where
obstacles move or change over time;

— RRT is capable of exploring and adapting to the
changing environment by constantly expanding the tree;

— it is well-suited for scenarios where the exact
goal is not known, as it can explore the search space to
find potential solutions.

Weaknesses:

— RRT is not goal-directed and does not guarantee
finding the optimal path;

— it can be computationally expensive in terms of
time and memory, especially in high-dimensional spaces;

— the quality of the generated paths highly
depends on the sampling strategy and the exploration bias;

— RRT may struggle to find feasible paths in
cluttered environments with narrow passages or tight
spaces.

in  high-

Future Realization

1. The autonomous suitcase will consist of a
Raspberry Pi microcomputer, 2 motors for the wheels, a
camera, 2 servo motors for turning the wheels and 2 servo
motors for, as well as additional sensors to determine the
distance between the suitcase and the user's phone.

2. You can use infrared or ultrasonic sensors to
avoid common obstacles - other people, suitcases, etc.

3. The decision algorithm uses two sensors as a
reference displacement. The essence of obstacle
avoidance is how quickly the sensor recognizes that there
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is an obstacle in front of the suitcase. The decision-
making algorithm method starts with the detection of an
obstacle by an ultrasonic sensor and calculates the
distance in front of the suitcase, and we set the minimum
distance of the drone near the obstacle to be 50 cm.

4. In addition to obstacle avoidance, the suitcase
can implement algorithms for finding the shortest path to
efficiently navigate around obstacles. Some possible
algorithms include Dijkstra's algorithm, A-Star, Bi-
Directional A-Star and Rapidly-exploring Random Tree
(RRT).

5. The minimum distance to the owner and
bypassing all obstacles when moving in different
directions.

Experiment

To evaluate the performance of different
pathfinding algorithms in a static environment, we
conducted a comprehensive experiment using four
popular algorithms: A*, BiA*, Dijkstra's algorithm, and
RRT. The goal of the experiment was to compare the
algorithms' effectiveness in finding optimal paths while
navigating through a static obstacle environment.

For this experiment, we implemented the A*, BiA*,
Dijkstra's, and RRT algorithms using a custom software
framework developed in Python. The framework
provided us with the necessary tools and functionality to
execute the algorithms and analyze their performance.
In the experiment, each algorithm was provided with the
same start and goal positions. The task assigned to the
algorithms was to find the optimal path from the start
position to the goal position while avoiding static
obstacles present in the environment. The start and the
end positions of maze can be found in the next figure.

Figure — The start and the end positions of maze

To create a realistic scenario, we set up a simulated
environment using a grid-based map. The map was
represented as a matrix, where obstacles were marked
with the value "1" and non-obstacle areas with the value
"0". This map served as the basis for the algorithms to
navigate through and find the optimal paths. The
experiment aimed to provide valuable insights into the
strengths and weaknesses of each algorithm in a static
environment. By comparing their performance metrics,

such as path length, computation time, and efficiency, we
could determine which algorithm was most suitable for
real-world applications involving path planning in static
obstacle environments.

It's important to note that the focus of the
experiment was on static obstacles rather than dynamic
ones. The algorithms were designed to navigate through
the predefined static obstacles efficiently.

Additionally, we considered the starting and ending
points of movement in order to decide on the most
appropriate algorithm. We recognized that different
algorithms may excel in different scenarios, and the
choice of algorithm could depend on factors such as
computational efficiency, accuracy, and adaptability to
the environment.

Results of the experiment

The experiment provided valuable insights into the
performance of A*, BiA*, Dijkstra's, and RRT
algorithms in a static obstacle environment. The findings
can be used to guide the selection of the most suitable
algorithm for real-world applications involving path
planning in similar environments.

Table 2 — Result of the experiment

Algorithm Obstacle type | Estimated time (sec)
A* Static 20.26
BiA* Static 30.46
Djiksta’s Static 49.96
RRT Static 130.34

The results of the experiment can be seen in table 2.
According to the results of the experiment, the best
algorithm is A* because it has the least estimated time.
Also, this algorithm will be used in future realization of
a smart suitcase.

Conclusion

In summary, our research focused on finding the
best shortest path algorithm for smart suitcases in a static
obstacle environment. We conducted a comprehensive
experiment comparing the performance of four popular
algorithms: A*, BiA*, Dijkstra's, and RRT. The objective
was to identify the most effective algorithm for guiding
smart suitcases through obstacle-rich scenarios.

In this paper, we provided an overview of the
existing solutions and realizations of smart suitcases.
Also, each algorithm was described as they were
implemented as a Python program.

Furthermore, our research contributes to the broader
field of pathfinding algorithms by providing empirical
evidence and comparative analysis of the four algorithms
in a static obstacle environment. The results offer insights
into the strengths and limitations of each algorithm,
which can be valuable for researchers and practitioners
seeking to optimize path planning in various contexts.
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It is important to note that our study focused
specifically on a static obstacle environment. Future
research could explore the performance of these

Overall, the outcomes of this study pave the way for
advancements in smart suitcase technology and
contribute to the ongoing pursuit of efficient and

algorithms in dynamic and unpredictable obstacle cffective  path planning algorithms for various
scenarios to further enhance the applicability of smart applications.
suitcases in real-world settings.
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