
Управління розвитком складних систем (58 – 2024) ISSN 2219-5300

© M. Poliakov, B. Yeremenko 139

DOI: 10.32347/2412-9933.2024.58.139-145
UDC 004.27

Poliakov Mykyta
Postgraduate student Department of Information Technology Design and Applied Mathematics,
https://orcid.org/0000-0002-5061-4866
Kyiv National University of Construction and Architecture

Yeremenko Bohdan
PhD, Associate Professor Department of Management Technologies,
https://orcid.org/0000-0002-3734-0813
Taras Shevchenko National University of Kyiv

INFO-COMMUNICATION SYSTEM OF THE ELECTRONIC ESTIMATION

OF ADOLESCENTS’ SPECIAL ABILITIES

Abstract. The focus of this study is aimed at the career guidance of adolescents. It is shown that currently
there are various methods and tools for the decision support of the youth regarding the future profession
choice, but the vast majority of them are either long-term or accompanied by the risks of a negligent attitude
to the process of career guidance on the adolescents' side due to misunderstanding or loss of interest in the
process itself. That is why this work is a continuation of research aimed at the development of info-
communication systems that use game technologies in order to attract the attention of an adolescent when
performing professionally oriented tasks for self-assessment of their own special abilities. In this work, the
architecture of the "Electronic Estimation of Adolescents' Special Abilities" system is built based on the
available hardware and software, and the technologies that can be used in the construction of an info-
communication system are considered. The main idea is to build a micro service architecture that has the
potential to expand and be able to store copies of data in cloud storage. It is suggested to use such
technologies as: Kafka, Celery, Redis, PostgreSQL, AWS S3 Storage, FastAPI. Examples of determining
the final conclusion of the system with a recommendation on the profession are described. An example of
system operation from the user's side using a game is shown.

Keywords: background tasks; data backups; framework; message queue system; microservices; system
architecture

Introduction

Career guidance is an essential component of school
and university-level education when trying to ensure that
adolescents effectively use the skills they gained
throughout their studying in the real jobs. With the
rapidly evolving and increasingly globalised job market,
demands are also being placed on the nature of this
guidance and its need to support the development of a
wide range of career skills and capabilities [1].

There are many approaches on how to help young
people with the decision of their future profession across
different continents and countries. This article is also
dedicated to solving the current problem of professional
orientation of teenagers.

One of the most used tools to give career guidance
support is the test.

In Europe one of the most popular tools for career
guidance is the "Magellano" complex. It does not require
software installation and covers a wide range of
specialties but which is adapted to European universities
only [2; 3].

There's a career guidance method in Japan that
helps adolescents to consciously choose their
professional path. This technique is based on the
Fukuyama test [2]. The test also reflects the situation on
the labour market.

The SAT Reasoning Test is a standardised test in
the United States that helps universities evaluate
applicants’ academic knowledge and analytical
capabilities. The test has two major sections: the
evidence-based reading and writing section and Math [4].

In Ukraine the popular service called Diia created a
career-guidance test. The test suggests how to make
decisions and perceive the world around the person [5].

The test includes 94 questions and requires to be
completed in 30 minutes. The test suggests the person to
select an answer to a question without hesitation for too
long, that is, to act on the first instinct and to better
understand which type of activity brings the most
pleasure. The big advantage of the test is that the
adolescent can complete it at home [5].

The test can be performed rather quickly, but the
conclusion precision can be very low. Sometimes the test
can be taken at home but the adolescent can be not fully

Технології управління розвитком

140

involved and easily distracted. In addition, not
understanding the question may lead to frustration.

The test can take a couple of days but can lead to a
higher stress connected with the stakes of not entering
college. It can take years, like in the case of the F-test but
requires involvement of psychologists and teachers that
help with the career guidance. However, there are various
game applications that provide the opportunity to teach
adolescents the basics of the profession in a game form.
These games might sustain a higher level of interest of a
young individual as the person does activities and
achieves visible progress in the game.

Thus, the development of intelligent info-
communication systems, which are able to provide the
adolescent with automatic career guidance support, that
can be taken in a comfortable environment, with a small
involvement of people resources and be performed
quickly with the high interest of the adolescent becomes
very important.

Goal and Tasks of the Publication

The goal of this study is to analyse existing tools to
develop the Electronic Estimation of Adolescents’
Special Abilities info-communication system and define
its architecture.

To achieve the goal, it was necessary to solve the
following issues:

1. Design an architectural schema of the Electronic
Estimation of Adolescents’ Special Abilities info-
communication system;

2. Choose development tools;
3. Define the user story of the application.

Architectural Design

Fig. 1 is proposed the generalised architecture of the
info-communication system of the Electronic Estimation
of Adolescents’ Special Abilities.

User’s interaction with the system is happening with
the help of the Backend service that contains endpoints
for frontend needs.

Database (DB) Application Programming Interface
(API) is the service that maintains the connection to the
database. It is important to have only one data source
point. It is possible to have connections to DB from
different services but the main priority is the safety of
data. If one of the services stops working in the middle of
interaction with data and at the same time the other
service will rely on the same data, unexpected behaviour
can occur.

The other possible issue is unstructured data
operations. This problem is also solved by the selected
approach because inside the DB API service it can be
strictly defined what operations are desirable and which
are not. Queries to the database can be regulated by the
logic written inside the service.

The users should be notified if there are ready results,
generated in the Neuro-Fuzzy Inference System. To
achieve that the system requires a Cache Storage, where
data can be saved before returning to the Frontend (FE),
and can be retrieved in case of system failure.

The system has a mechanism to save backups of the
data to the cloud storage. DB API is able to create
background tasks to save database dumps, so later the
data can be restored or needs to be transferred to another
place.

Message queue system ensures that the information
between the services is shared and won’t be lost if any
service stops its work.

The other way of communication between the
services is the direct API calls. Having this approach the
service that makes a call will receive an exception or any
other message can be shown to the user saying that
something is wrong.

Analysis of existing development tools

Programming languages
Starting with the programming language it was

decided to use Python because it is the interpreted
programming language that has a large number of
libraries that simplify the development, training, and
usage of machine learning models.

Figure 1 – The generalised architecture of the Electronic Estimation of Adolescents’ Special Abilities info-communication system

Управління розвитком складних систем (58 – 2024) ISSN 2219-5300

 141

Architecture model
A monolithic architecture is a traditional approach

to designing software where an entire application is built
as a single, indivisible unit [6].

On one hand it gives us the opportunity to develop
faster and simplifies the implementation because the
codebase is stored in one place. But on the other hand it
makes the application hardly scalable and won’t give us
the opportunity to handle a large volume of traffic.

In a microservices architecture, an application is
built as a collection of small, independent services, each
representing a specific business capability. These
services are loosely coupled and communicate with each
other over a network, often using lightweight protocols
like Hypertext Transfer Protocol (HTTP) or messaging
queues [6].

This approach allows us to be very scalable as each
service can be scaled on demand and doesn’t affect other
services. But a noticeable disadvantage is the complexity
of the solution because communication between
microservices must be robust and this approach forces us
to monitor many components in the system, which might
be a challenging task.

Considering two options it was decided to proceed
with microservice architecture. It can be very hard to
maintain but it gives us a very big plus in scalability.

Web frameworks
Python web frameworks support the

Representational State Transfer (REST) API, which is an
API that conforms to the constraints of REST
architectural style.

REST is a set of architectural constraints, not a
protocol or a standard. [7].

This means that the communication in the
microservice architecture via HTTP, the common
protocol used for communication between web servers
and clients, is handled by selecting the web framework.

Three Python web frameworks were considered as
a possible choice: Django [8], Flask [9] or FastApi [9].

Django’s main advantages are speed, scalability,
documentation and security. Cons of Django are: not
good for simpler projects and lower performance [8].

Advantages of Flask are lightness and flexibility.
Disadvantages of Flask are lack of built-in features and
lack of standardisation.

FastAPI is a modern framework based on
asynchronous programming, known for its excellent
performance and low latency. It supports the use of type
annotations to enhance code readability and
maintainability. Also FastAPI excels in rapid
development, making it suitable for building prototypes,
Proof of Concept, and applications with quick iterations.

On the other hand, FastAPI is relatively new and
may lack mature solutions and community support in
certain areas. Also because of the asynchronous nature it
may be harder to learn how to use this framework.

So considering 3 options it’s decided to use
FastAPI. Django was dropped because it’s good for
building large and complex web applications rather than
small microservices. And the advantage is given to the
FastAPI over the Flask because of the asynchronous
nature which will give us a better performance.

Message queue system
The other communication method in the

microservice architecture is messages. The candidates for
the message queue system are: Kafka and RabbitMQ.

RabbitMQ has minimal guarantees regarding
ordering messages within a stream which may be a
crucial disadvantage for the system. On the other hand,
Kafka provides message ordering thanks to its
partitioning.

The other feature that is present in Kafka but not in
RabbitMQ is delivery guarantees. In a partition, Kafka
guarantees that the whole batch of messages either fails
or passes, when RabbitMQ doesn’t guarantee atomicity,
even in relation to transactions involving a single queue
[10]. Moreover, such characteristics of Kafka like High-
throughput, Fault-Tolerance, Durability and Scalability
[11] made the choice of Kafka pretty clear for the system.

Communication with client (Frontend)
The communication with the Frontend side of the

application could be done using HTTP connection. But
this approach won’t allow us to build the communication
between Frontend and Backend in both ways. With
HTTP Frontend sends requests to Backend and the latter
responds to them but Frontend will never know if some
work is completed on the Backend side.

So it’s decided to additionally use websocket
connection - technology that makes it possible to open a
two-way interactive communication session between the
user’s browser and a server [12]. However, this approach
is harder to maintain because it requires the services to
be tolerant to the connection loss.

To solve this problem, Redis topics are used.
Redis is a key-value database which is suitable

when the application requires handling a large volume of
small and continuous reads and writes and also supports
Publish/Subscribe messaging paradigm [13, 14].
Backend pushes friendly messages to the Redis topics
and if the websocket connection is closed, messages
could still be retrieved from the database and be sent to
the Frontend when the connection is open again.

Background tasks
The data backup process can be solved by using

asynchronous tasks.
FastAPI provides built-in background task support

[15].
The other considered option is Celery.
Celery is an open-source distributed task queue

framework written in Python. It’s designed to manage
and distribute tasks (often time-consuming or resource-
intensive) across multiple worker processes or machines.

Технології управління розвитком

142

This is particularly useful for handling asynchronous
tasks in web applications, batch processing, and other
scenarios where there’s a need to offload tasks from the
main application. This tool’s attributes ideally fit our
application. Moreover it has next advantages: Scalability,
Task Priority and Scheduling, Retry Mechanism, Result
Tracking.

As a disadvantage Celery relies on a message broker
for communication, which introduces an additional
dependency to a component that needs to be set up and
maintained. Moreover if the message broker fails, the
processing of tasks can be affected which leads to a
decrease of the application reliability.

Following Celery documentation, it supports Redis,
which is already used in the application so we decided to
reuse the key-value database here as well, as a message
broker that sends tasks to the worker (backend). In
addition Redis is supported by Celery as a backend –
results storage of the completed task [16].

Backup data storage

Several options were considered as storage for the
backup data. There are 2 storage types that were
considered for storing the backup data: Physical storage
(the data is saved on the hard drives) and Cloud storage
(the data is saved on the web).

There can be issues with physical storage like where
to keep the hard drives or how to transfer them, so it's
decided to use cloud storage as a backup place.

Among many available options the decision was
made between the next 3: Amazon Simple Storage
Service (AWS S3), Azure Blob Storage and Google
Cloud Storage [17].

AWS S3 is a highly scalable and durable cloud
object storage. It offers secure storage for various data
types, including images, videos, documents, backups,
and application data.

Here are the key features and advantages that S3
provides: Performance, Flexible storage classes,
Availability, Scalability.

Potential limitations of S3: Limited direct access,
The complexity of Bucket Policies, Data transfer costs,
Limited performance for high-frequency small object
operations.

Google Cloud Storage (GCS) is a cloud object
storage service by Google Cloud Platform. It was
launched in 2010 and offers an affordable solution for
storing and retrieving data in the cloud.

The platform also stores data as objects in buckets.
These buckets can be assigned to four storage classes –
Standard, Coldline, Nearline, and Archive.

GCS allows users to store and access unstructured
data in a highly available and globally distributed
manner. Key features and strengths of GCS: scalability,
multi-regional and regional storage, data lifecycle
management, Access control, Low latency.

Potential limitations of GCS are the following: No
native indexing or search, Limited availability zones,
Pricing complexity.

Azure Blob Storage is a cloud object storage service
by Microsoft Azure. It was first launched in 2010 and has
evolved to become a vital component of the Azure cloud
ecosystem.

The fundamental data storage unit in Azure Blob
Storage is a blob (binary large object). Blobs can store
various types of unstructured data. Each blob is identified
by a unique URL comprising the storage account name,
container name, and blob name. Azure Blob Storage
groups related blobs into logical units called Containers.
Containers are analogous to folders in a file system.

Key features and strengths of Azure Blob Storage:
multiple blob types, unlimited scalability.

Azure Blob Storage has certain disadvantages that
users should consider.

Potential limitations of Azure Blob Storage: Data
retrieval latency, Transaction and transfer costs.

It is decided to use AWS S3 Storage as a cloud
storage for the backup data since it is highly available and
scalable storage.

Application data storage

The next big step is to determine which type of the
database to use: relational or non-relational [18].

Relational databases allow building relationships
between data points or in other words tables. To do
operations with data this type of databases use Structured
Query Language (SQL), which makes it easy to query
and update data. Relational databases allow to create
indexes for the columns in tables to do the search quicker
but as data grows they can take up a lot of space. Also the
database structure should be defined very well from the
very beginning to avoid making changes to the DB
schema as the updates are time-consuming and
complicated.

Non-relational databases do not require the data to
be confined to a structured group. But this advantage
produces a big disadvantage of querying the data. Data
may not be consistent, meaning it could have different
values for one key. Also data integrity can suffer if not
managed correctly. Moreover there’s no "universal"
language to query the data as there’s SQL for the
relational databases.

The preference is given to the relational database
PostgreSQL as we need to support links between data.
Also a big bonus is the existence of SQL.

Work Examples

The user story starts with a menu that allows
adolescents to select a game. The game is picked and it
automatically launches.

The example (Fig. 2) is shown based on the Journey
2050 game [19].

Управління розвитком складних систем (58 – 2024) ISSN 2219-5300

 143

a

b

c

Figure 2 – The example of the Journey 2050 game: a – select level menu; b – level 1; c – level 4

The next step is to pick a level. The game consists of
several game tasks of different complexity levels [20].

As the person completes levels, the results of the
completion are passed to the Neuro-Fuzzy Inference
System, where the final score is generated. Based on the
previous works, to get a score the following formulas are
used [20]:

𝑣 =
𝑡௖௛௢௜௖௘

𝑁 ∙ 60
,

where tchoice – time in seconds that an adolescent spends
choosing a computer game task; 60 – time in seconds,

that is given to select a task; N is the ordinal number of
the selected task (N = 1,2,3).

And [20]:

𝜃 = 𝑣 + 𝜁 + ෍
𝐶௜

𝜏௜

ସ

௜ୀଶ

,

where 𝜁 – estimation of the first level of the task;

𝜏௜ – the time of passing the i-th (i = 2, 3, 4) level of the
computer game task; Сi – a constant determined by the
time of execution of the i-th level of the task by a
qualified specialist.

Технології управління розвитком

144

Based on the (𝐷 = 𝜃 − 𝑣) difference the
recommendatory conclusion can be generated.

If 𝐷 > 4, where 4 is the maximum achievable score
that is defined by how the expert completed the game,
then the profession can be recommended to the
adolescent.

On the other hand 𝐷 < 1 means that the task
completely failed or the task wasn’t finished, then the
conclusion will be “try again” or “choose another game”.

In the case of 1 < 𝐷 < 4 the results of the particular
levels are considered. Let’s assume the 1st and 2nd levels
are passed with mistakes but 3rd and 4th, which are
harder, are passed without mistakes. The conclusion can
be “recommended” too, because the adolescent tried to
improve results.

After results are calculated they are passed back to
the user’s profile, where the person can see all activities.

Conclusion

1. The generalised architecture of the info-

communication system of the electronic estimation of

adolescents’ special abilities is provided.

2. Based on the analysis of the available

development tools results, it was determined which of

them should be used for the implementation of an info-

communication system for the electronic estimation of

adolescents’ special abilities. The main criteria for the

selected tools was to allow the info-communication

system to be scalable in the future.

3. The example of the professional direction game

shows the estimation of the adolescent's degree of interest

in the future profession.

 __

References

1. https://pure.coventry.ac.uk/ws/portalfiles/portal/11918037/chapter100comb.pdf

2. “Gamefication of Youth’s Career Guidance Self-Identification” 2022 IEEE Smart Information Systems and Technologies
(SIST), 28-30 April, 2022, Nur-Sultan, Kazakhstan.

3. Career guidance test battery "Magellano University". URL: https://magellano.com.ua/method/.
4. https://leapscholar.com/blog/sat-reasoning-test-everything-you-need-to-know/.

5. https://osvita.diia.gov.ua/en/prof-orientation-quiz.
6. https://www.geeksforgeeks.org/monolithic-vs-microservices-architecture/.

7. https://www.redhat.com/en/topics/api/what-is-a-rest-api.
8. https://careerfoundry.com/en/blog/web-development/django-framework-guide/.

9. https://medium.com/@tubelwj/comparison-of-flask-django-and-fastapi-advantages-disadvantages-and-use-cases-
63e7c692382a.

10. https://www.upsolver.com/blog/kafka-versus-rabbitmq-architecture-performance-use-case
11. https://data-flair.training/blogs/advantages-and-disadvantages-of-kafka
12. https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

13. https://redis.com/nosql/key-value-databases/
14. https://redis.io/docs/interact/pubsub/

15. https://fastapi.tiangolo.com/tutorial/background-tasks/
16. https://docs.celeryq.dev/en/stable/getting-started/backends-and-brokers/index.html

17. https://airbyte.com/data-engineering-resources/s3-gcs-and-azure-blob-storage-compared
18. https://aloa.co/blog/relational-vs-non-relational-database-pros-cons

19. https://www.journey2050.com/about-us/.
20. “Information technology of adolescents` professional self-identification” 3rd International Workshop on Intelligent

Information Technologies & Systems of Information Security (IntelITSIS-2022) Khmelnytskyi, Ukraine, May 25 – 27, 2022.

Received 02.03.2024
__

Поляков Микита Олександрович
Аспірант кафедри інформаційних технологій проєктування та прикладної математики,
https://orcid.org/0000-0002-5061-4866

Київський національний університет будівництва і архітектури, Київ, Україна

Єременко Богдан Михайлович
Кандидат технічних наук, доцент кафедри технологій управління
https://orcid.org/0000-0002-3734-0813

Київський національний університет ім. Тараса Шевченка, Київ, Україна

Управління розвитком складних систем (58 – 2024) ISSN 2219-5300

 145

ІНФО-КОМУНІКАЦІЙНА СИСТЕМА ЕЛЕКТРОННОГО ОЦІНЮВАННЯ

СПЕЦІАЛЬНИХ ЗДІБНОСТЕЙ ПІДЛІТКІВ

Анотація. Фокус цього дослідження спрямовано на профорієнтаційний супровід підлітків. Показано, що наразі

існують різні методи і засоби підтримки рішення підлітка щодо вибору майбутньої професії, але переважна більшість
з них або довготривалі, або супроводжуються ризиками халатного відношення до процесу проведення профорієнтації
саме з боку підлітків через нерозуміння чи втрату інтересу до самого процесу. Саме тому ця робота є продовженням
досліджень, спрямованих на розроблення інформаційно-комунікаційних систем, що використовують ігрові технології для
того, щоб привертати увагу підлітка під час виконання професійно-орієнтованих завдань для самооцінки власних
спеціальних здібностей. У пропонованій роботі на основі доступного апаратного і програмного забезпечення побудовано
архітектуру системи електронного оцінювання спеціальних здібностей підлітків і розглянуто технології, які можуть
бути використані при побудові інфо-комунікаційної системи. Головна ідея полягає в тому, щоб побудувати мікросервісну
архітектуру, яка має потенціал до розширення і змогу зберігати копії даних у хмарному сховищі. Запропоновано
використовувати такі технології, як: Kafka, Celery, Redis, PostgreSQL, AWS S3 Storage, FastAPI. Описано приклади
визначення фінального висновку системи з рекомендацією щодо професії. Показано приклад роботи системи з боку
користувача з використанням гри.

Ключові слова: архітектура системи; мікросервіс; резервне копіювання даних; фонові завдання; фреймворк;

система черги повідомлень

Link to publication

APA Poliakov, M., & Yeremenko, B., (2024). Info-Communication System of the Electronic Estimation of
Adolescents’ Special Abilities. Management of Development of Complex Systems, 58, 139–145,
dx.doi.org\10.32347/2412-9933.2024.58.139-145.

ДСТУ Поляков, М. В., Єременко Б. М. Інфо-комунікаційна система електронного оцінювання спеціальних
здібностей підлітків. Управління розвитком складних систем. Київ, 2024. № 58. С. 139 – 145,
dx.doi.org\10.32347/2412-9933.2024.58.139-145.

