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INTEGRATION OF MACHINE LEARNING AND DEEP LEARNING  
METHODS FOR SUNFLOWER YIELD PREDICTION 

 
Abstract. Practical experience in yield forecasting demonstrates that it is a complex multifactorial task 
requiring precise and reliable methods for resolution. The use of machine learning and deep learning is 
crucial for achieving better results in digital agronomy. This paper is dedicated to the development of an 
intelligent system for sunflower yield forecasting. Based on the analysis of scientific publications and 
practical experience, the main issues of data processing are summarized, and schemes for their resolution 
are proposed. The main stages of the work included the study of the current state of digital agronomy, the 
selection of an approach, the development of a data processing method, the software implementation of the 
model, and testing. The key challenges were the limited data sets and the complexity of choosing the optimal 
approach to avoid overfitting. Combining different analysis methods allowed the creation of a powerful 
system that surpasses traditional approaches, though it requires more data for training. The study's 
conclusions show that machine learning and deep learning methods, such as LightGBM and U-Net, along 
with the proposed data processing methods, achieve high accuracy in forecasting. The model demonstrated 
the ability to generalize knowledge to new fields and to build detailed yield maps. Further research includes 
the development of a method for generating combinations of plant care options, the adaptation of computer 
vision methods with optimized algorithms to reduce computational complexity, and the expansion of the 
system's functionality to include cybersecurity aspects. The proposed system significantly enhances the 
efficiency of sunflower yield forecasting, contributing to the development of digital agronomy. 
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Introduction 

Today, digital agronomy is in a stage of 
development and faces challenges, particularly in 
yield forecasting using modern technologies. The 
capabilities of forecasting methods in the agricultural 
sector are quite limited. Traditional statistical methods 
provide only approximate values of potential yield, 
while artificial intelligence-based methods currently 
cannot guarantee high reliability and informativeness, 
as these technologies are aimed at forecasting the total 
yield of the entire field, which significantly limits their 
application. Therefore, considerable attention is paid 
to the implementation of artificial intelligence in the 
agricultural sphere, as this direction has great 
potential, although it requires further research and 
improvement. 

The key task of this study is to develop a system 
that includes an optimization approach to data 
processing and artificial intelligence methods for 
forecasting, which in combination should effectively 
perform both local forecasts and global analysis of 

agricultural lands. This approach will achieve high 
forecasting accuracy by recognizing and accounting for 
complex vegetation development patterns, going 
beyond traditional analysis. 

It is necessary to create a model capable of 
forecasting yield with high accuracy and reliability, 
based on comprehensive data analysis. To achieve this, a 
large number of information sources need to be 
considered, including satellite images in various spectra, 
meteorological data, as well as specific field and crop 
characteristics such as plant hybrid, planting density, 
planting date, and chemical treatment history. 

Based on these data, an approach will be developed 
that takes into account key factors of agricultural 
production, from the genetic characteristics of crops to 
environmental conditions, ensuring high forecasting 
accuracy. 

Review of Existing Research 

The most studied are traditional yield forecasting 
methods. These methods are based on the application of 
empirically established relationships determined through 
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correlation analysis. They rely on historical data and 
statistical studies of the interconnections between various 
agronomic factors and the final field productivity. 
Classical machine learning methods, such as decision 
trees, support vector machines (SVM), linear and 
multivariate regression, are often used to analyze these 
dependencies and build forecasts. These methods allow 
modeling complex dependencies between data, although 
they have limitations in accounting for nonlinear 
dependencies. 

Previous studies have used vegetation indices to 
establish relationships between them and the final field 
productivity. By analyzing the correlation between 
vegetation indices and actual yield, empirical equations 
were developed that formed the basis of forecasting 
models. This process involved directly deriving 
dependencies from the collected data on the relationship 
between indices and yield without resorting to complex 
machine learning methods [1]. 

Researchers have also actively applied machine 
learning methods to improve yield forecasting accuracy, 
particularly through the efficient selection of key 
parameters influencing the result. The use of regression 
models allowed for a detailed analysis of the 
dependencies between a set of input data and the final 
yield. This approach contributed to the development of 
more accurate forecasting models and opened up 
possibilities for a deeper understanding of the impact of 
various agronomic and environmental factors on crop 
productivity [2]. However, a drawback of these methods 
is their limited ability to generalize to new data, 
particularly information about fields outside the training 
sample. 

To identify more complex relationships in the data, 
such as weather conditions and plant genotype, deep 
learning methods were used. The development of neural 
networks, as well as their combination in complex 
systems with integrated networks [3], allowed for deeper 
and more specific information processing. This approach 
ensured the detection of hidden dependencies between 
various factors and the final field productivity, opening 
new opportunities for accurate yield forecasting. 

However, despite the high efficiency of deep 
learning methods, researchers have not considered the 
possibility of detailing forecasts to individual local areas 
of the field. Developed mathematical models focus on 
determining the overall total yield at the entire field level, 
without taking into account the potential heterogeneity of 
conditions or productivity of different areas. This 
limitation reduces the potential use of these models for 
precise agricultural management. 

In their studies, specialists have resorted not only to 
supervised learning methods but also applied 
reinforcement learning approaches, expanding the 
capabilities of deep neural networks. In particular, the use 
of recurrent neural networks in combination with the q-

learning method achieved an average forecasting 
accuracy of 93.7% [4], which is a significant 
achievement for solving such a complex problem as yield 
forecasting. However, this study focused on forecasting 
the total yield, not extending its focus to detailed 
forecasting for individual areas. Although theoretically, 
the model could be adapted for such detailed forecasting, 
researchers did not provide information on conducting 
such experiments. 

Traditional methods also include time series 
analysis using the ARIMA method [5] and statistical 
methods, in particular, kriging [6], which is often applied 
in cases where the data is presented in a specific format 
that requires the adjustment of the corresponding 
mathematical model. 

It is also worth noting that there are systems that 
provide paid access for forecasting [7, 8] and for detailed 
analysis of plant health status [9]. However, specific 
accuracy indicators or examples of forecasts are not 
provided in open access. 

Definition of Research Direction 

In this study, a comprehensive approach combining 
decision tree-based methods with computer vision 
techniques was chosen for forecasting. This approach 
aims to leverage the advantages of both methods to create 
more accurate and reliable predictions. The systems are 
intended to complement each other, enhancing 
capabilities and increasing the stability of forecasts. The 
decision tree method ensures high prediction accuracy 
based on numerical and categorical data, while computer 
vision techniques provide additional information through 
image analysis, allowing for consideration of visual 
aspects of field conditions. 

The models will analyze different aspects of 
information using their unique interpretations. Decision 
trees can effectively handle large volumes of data, 
considering the impact of numerous factors such as 
weather conditions, soil type, and agronomic practices. 
Simultaneously, computer vision methods analyze 
satellite images of fields, identifying visual patterns that 
may indicate the state of vegetation and potential issues. 
Their combination will enable a comprehensive 
examination of available data and a more holistic analysis 
of field vegetation, thereby creating the prerequisites for 
effective and accurate forecasting. 

Main part of the research 

Considering the mentioned limitations imposed by 
the unresolved issue of detailed forecasting and the 
imperfection of current approaches, solving it will be a 
significant step in the development of digital agronomy. 
Implementing accurate and detailed forecasting will 
improve the efficiency of agronomic production 
processes, optimize resource use, and reduce costs. This 
will enable more informed decisions regarding planting, 
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fertilization, irrigation, and harvesting, ultimately 
leading to increased yield and product quality. 

From a scientific progress perspective, solving this 
problem will make a significant contribution to the 
development of agronomic sciences. A system capable of 
providing detailed forecasts with high accuracy will 
exceed the capabilities of current solutions. This will 
enhance current agronomic practices and create a 
foundation for further research in this direction. Such a 
breakthrough in forecasting could open new horizons for 
research in optimizing agrotechnical measures, 
managing natural resources, and adapting to climate 
change. 

The aim of this study is to develop highly accurate 
yield forecasting methods, which includes creating 
detailed forecast maps. The main objective is to ensure 
the reliability and accuracy of the obtained forecasts by 
developing an efficient model capable of accounting for 
various factors affecting yield. The study aims to achieve 
high forecasting accuracy and create tools that will allow 
these forecasts to be visualized as maps, reflecting the 
local characteristics of fields. 

The main tasks of the study are: 
 To develop a data processing algorithm to 

maximize the accuracy that models can achieve when 
trained on this data. 

 To develop an efficient architecture for the 
forecasting system that can fully exploit the potential of 
the models used. 

 To implement a yield forecasting system that 
provides highly accurate detailed forecasts. 

 To develop a user interface to simplify 
information presentation and ease of experimentation. 

 To analyze the obtained results and propose 
possible further improvements. 

For yield forecasting, it is important to consider 
factors that directly affect plant conditions and, 
consequently, their development: information about 
weather conditions and the application of chemical 
treatments in the field. Additionally, monitoring 
indicators that provide expanded information about the 
field and the plants within it are crucial: plant hybrid, 
sowing date, sowing density, and satellite images. 

Research on yield forecasting demonstrates that the 
development and health status of plants can be effectively 
tracked by analyzing the amount of absorbed solar 
radiation [1; 2], which is supported by high correlations 
and the ability of artificial intelligence models to make 
accurate predictions based on this information [3; 4]. 
This is explained by the fact that plants use light for 
photosynthesis, and thus the amount of absorbed light 
directly correlates with their health and productivity. 
Photosynthesis is a key process in the life of a plant, 
during which sunlight is used to convert carbon dioxide 
and water into oxygen and glucose, which serves as an 
energy resource for growth and development. Hence, the 

amount of absorbed solar radiation directly affects the 
efficiency of photosynthesis: the more light is absorbed, 
the more energy can be synthesized by the plant. This, in 
turn, promotes better growth, development, and health of 
the plant, providing it with the necessary conditions to 
achieve maximum productivity. Therefore, by tracking 
the amount of absorbed solar radiation, valuable 
information about the condition of the plants and their 
yield potential can be obtained. 

By capturing reflected solar radiation, one can get 
an idea of the extent to which it has been absorbed by the 
plant. Reflected and absorbed solar radiation together 
form the overall intensity of sunlight, which is relatively 
stable. Even under conditions of limited resolution – in 
this study, images with a resolution of 10 by 10 meters 
are used – the obtained data provide valuable insights 
into plant development, as confirmed by high 
correlations achieved even when analyzing only a single 
vegetation index [1]. 

In this study, vegetation indices are actively used 
for the analysis of plant conditions, particularly NDVI, 
NDWI, GLI, CLg, and CLr. These indices are crucial for 
accurate yield forecasting as they reflect various aspects 
of the physiological state of plants. These indices focus 
on measuring the chlorophyll content in leaves, which is 
an indicator of photosynthetic activity and the overall 
health of plants [10]. 

Combining these indices allows for a 
comprehensive analysis of the impact of different 
weather conditions and management interventions on 
yield, enabling an accurate determination of plant 
conditions at any stage of their development. Such an 
approach is critical for developing effective yield 
forecasting models. 

Ideally, it would be appropriate to analyze satellite 
data in its pure, unmodified form, which would provide 
the most complete picture of vegetation status and its 
interaction with the environment.  

However, in practice, access to pure, unprocessed 
satellite data is often limited. Practical aspects of 
obtaining and using satellite data often require 
compromises, particularly due to limitations imposed by 
data providers. The satellite data for this study is obtained 
from SkyGlyph, which provides it exclusively in the 
form of vegetation indices among the available options. 

The aim of this study is to develop a system to 
enhance the accuracy of yield forecasting. The main 
focus is on minimizing deviations between the predicted 
and actual yield figures. The task can be formulated as 
follows.  

To construct a detailed yield map, the field 𝑌 is 

divided into individual plots 𝑦௜ ∈ 𝑌, 𝑖 = 1, 𝑛, where 𝑛 is 
the number of plots in the field 𝑌, and a separate forecast 
is made for each plot. Let the predicted yield value be 
denoted as 

𝑦ො௜ = 𝑓ఏ(𝑥௜), 
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where 𝑥௜ ∈ 𝑋 – the vector of input information describing 
the state of plot i during the period from sowing to the 
hundredth day after the sowing date inclusive; 

𝑋 – data matrix of all field plots 𝑌; 
𝜃 – forecast model parameters; 
𝑓 – the functional relationship between the input 

data of the field state and the yield, which is established 
by machine learning methods. 

Then the forecasting task can be described as 
follows: 

𝐿(𝑓ఏ(𝑥௜), 𝑦௜) → 𝑚𝑖𝑛, 𝑖 = 1, 𝑛, 

where 𝐿 – loss function that reflects the deviation of the 
predicted values from the actual ones. 

The input data for yield forecasting is extremely 
voluminous and multidimensional. It encompasses a 
wide variety of data, from weather conditions to specifics 
of agronomic practices. To build an effective forecasting 
model based on such data, a significant number of 
observations need to be conducted. The complexity of the 
information requires large volumes of data because the 
more complex the information, the harder it is to identify 
hidden dependencies and patterns for quality training of 
the artificial intelligence model. 

The need for a large number of observations for 
analyzing multidimensional data in agronomic research 
can be explained by the significant complexity of 
interactions that exist between different agronomic 
factors. Each of these factors-whether it be temperature, 
humidity, soil type, precipitation levels, or solar radiation 
– can uniquely affect yield. For the model to adequately 
reflect these complex interactions and variability in 
conditions, it must be trained on a sufficiently large 
amount of data that provides a representative coverage of 
all possible scenarios. 

Additionally, each dimension in a multidimensional 
dataset can contribute additional information that needs 
to be integrated and analyzed in the context of other 
dimensions. For example, the dependency of yield on 
temperature may vary depending on soil moisture levels 
or how these conditions have changed throughout the 
growing season. Such multi-level dependency makes it 
impossible to adequately generalize based on a small 
amount of data, as this may lead to underestimating 
important interactions or overestimating less significant 
relationships. 

Furthermore, to identify statistically significant 
patterns in multidimensional data, it is necessary to have 
enough data to reduce noise and detect true patterns 
instead of random fluctuations. Without a large number 
of observations, models can become overfitted, meaning 
they become too specialized to the dataset they were 
trained on and lose the ability to generalize to new data 
or conditions, significantly reducing the quality of 
predictions. 

In this study, the sample size is limited due to 
difficulties associated with obtaining data on harvested 
crops, which requires individual negotiations with each 
farm, and the lack of automation in the process of 
uploading satellite images, leading to significant time 
costs for replenishing the training sample. Consequently, 
to effectively realize the potential of the available 
information in the context of accurate yield forecasting, 
a number of simplifications have been proposed. These 
simplifications aim to optimize the model training 
process, allowing for more accurate predictions based on 
a limited amount of data. 

Thus, the main task of data preprocessing is to 
minimize their dimensionality while preserving the 
maximum amount of information contained in them. The 
process includes correlation analysis to select important 
features, dimensionality reduction by finding minimum, 
mean, and maximum values, and a two-stage outlier 
removal based on z-score [14]. The algorithm is 
presented in the study [11]. 

For forecasting the yield of individual plots in this 
study, the LightGBM model [12] is applied. Given that 
the number of available observations is limited, the use 
of overly complex models, such as deep neural networks, 
is found to be ineffective. This is because complex 
models, under conditions of limited data, often lead to 
overfitting, where the model adapts too closely to the 
training sample and loses the ability to generalize to new 
data. 

Choosing an ensemble model of decision trees, such 
as LightGBM, is a justified decision under these 
conditions. This model allows for effective use of limited 
data without overfitting due to its structure and 
optimization algorithms. While LightGBM may not 
detect very complex hidden patterns in the data as some 
other artificial intelligence models can, it is effective in 
finding fundamental dependencies, enabling sufficiently 
high forecasting accuracy. Thanks to its properties, 
LightGBM ensures high efficiency in forecasting and 
generalizing knowledge in unknown conditions. 
Therefore, LightGBM becomes the optimal choice for 
solving the task of predicting the yield of individual plots. 

To compensate for the limitations associated with 
the local nature of LightGBM's forecasting, which does 
not take into account contextual information about 
surrounding land plots, the study employs a computer 
vision model with a U-Net architecture [15]. This model 
can segment the field into productivity zones using 
satellite imagery data, thereby providing the ability to 
assess the overall condition of the zone in which a 
specific plot is located. 

Through field segmentation, the U-Net model 
allows for the identification of different productivity 
zones, taking into account direct information about the 
10 by 10 meter plot and details about the condition of 
neighboring plants, possible soil density fluctuations, the 
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presence of underground water flows, the overall 
adaptation of plants to specific growing conditions, and 
other indicators that can be inferred from visual 
information. This information enables a "broader view" 
and a better understanding of the general conditions for 
plant development in the studied area. 

This approach significantly expands the potential 
of the LightGBM model, as information about which 
performance segment each plot belongs to is added to 
the input parameters. In other words, significant 
progress in yield forecasting accuracy is achieved 
through a combined approach that includes extended 
visual analysis along with deep vector analysis. The 
extended visual analysis allows the model to identify 
spatial relationships and detect complex patterns that 
often go unnoticed but may arise due to phenomena 
such as terrain fluctuations or water flows. This analysis 
is complemented by deep vector analysis, which 
focuses on studying individual plots of the field. This 
enables a detailed assessment of their condition, which 
is critical for the accuracy of overall forecasts. The 
synergy created by the combined use of these two 
methods significantly enhances the accuracy and 
reliability of predictions. 

As a result of applying the described data 
processing methods, an information vector was created 
for each field plot, describing its development during 
maturation. The Light Gradient Boosting Machine 
(LightGBM) was used for training the predictive model, 
which is an ensemble model that sequentially builds and 
complicates decision trees using gradient descent to 
optimize loss. The use of LightGBM allowed for 
effective yield forecasting, providing the ability to 
analyze each individual plot of the field in isolation. 

Mathematically, LightGBM optimizes the 
following objective function: 

𝐿(𝜃) = ∑ 𝑙൫𝑦௜ , 𝑓(𝑥௜ ; 𝜃)൯
௡
௜ୀଵ + ∑ 𝛺൫𝑔௝൯

௠
௝ୀଵ  (1) 

where 𝑙൫𝑦௜ , 𝑓(𝑥௜; 𝜃)൯ — the loss function that evaluates 

the discrepancy between the actual value 𝑦௜  and the 
predicted value 𝑓 based on the model parameters 𝜃; 

g – decision trees, which together form an ensemble 
model; 

𝑚 – a set of trees in the model; 
𝛺(𝑔௜) — the regularization term, which controls the 

model's complexity, particularly the penalty for the 
number and depth of decision trees [12]. 

A key feature of LightGBM (1) is its ability to 
process large volumes of data at high speed, thanks to the 
optimized distribution of tree branching points based on 
histograms and the use of gradient boosting with 
Gradient-based One-Side Sampling (GOSS) and 
Exclusive Feature Bundling (EFB) [13]. These 
technologies significantly reduce computational costs 
and improve the accuracy of analyzing each individual 

field plot, allowing detailed yield forecasting considering 
local agronomic conditions. 

To provide contextual information, a specialized 
computer vision model based on the U-net architecture 
was developed. This model is designed to analyze 
dependencies in data over large areas without being 
limited to local subspaces, enabling a global assessment 
of the state of agricultural lands. Due to its deep 
segmentation capability, the model effectively identifies 
areas with potentially high yield and delineates zones 
where lower productivity is expected. 

The U-net model has an encoder-decoder structure, 
where the encoder sequentially reduces the image size 
while extracting key features, and the decoder expands 
the reduced image back to its original size while retaining 
important details. Mathematically, each layer in U-net 
can be described as follows: 

𝑎௟ାଵ = 𝜎(𝑊௟ ∗ 𝑎௟ + 𝑏௟)  (2) 

where ∗ denotes the convolution operation; 
𝜎 – non-linear activation function (e.g., ReLU); 
𝑊௟, 𝑏௟ – weights and biases at the 𝑙-th layer; 
𝑎௟ – activation at the 𝑙-th layer; 
Convolutional layers effectively process spatial 

information, while up-convolution (transposed 
convolution) layers restore the details and dimensions of 
the image [15]. Due to this structure, U-net can assess 
dependencies in data over large areas, not limited to 
analyzing only local subspaces, and shows high 
efficiency in performing satellite image segmentation 
tasks [17; 18]. This allows the model (2) to globally 
evaluate the condition of agricultural fields, identifying 
areas with potentially high yield and highlighting zones 
where lower productivity is expected. 

Since agricultural fields have diverse sizes, a 
method of dividing images into smaller parts, known as 
patches, was applied for efficient data processing, as 
illustrated in fig. 1 and fig. 2. This approach ensures 
detailed segmentation of each part of the field separately, 
after which the obtained patches are combined to form a 
cohesive segmented image of the field. This process 
simplifies the processing of large land areas and enhances 
segmentation accuracy through detailed analysis of each 
fragment. 

 

 

Figure 1 – An example of extracting an image patch  
for subsequent transformation by a neural  

network into part of the original image [15] 
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Figure 2 – An example of patch overlaying 
 to form a continuous image 

 
In the process of patch overlaying, a method with 

weighting coefficients was used, allowing for a smoother 
integration of image parts. Each pixel in the overlapping 
areas receives a weight depending on its distance from 
the center of the patch, contributing to a smoother 
transition between segments. This approach minimizes 
the risk of sharp differences at the patch boundaries, 
ensuring high quality of the final segmented image and 
accurate representation of yield variability in the fields. 
The formula for determining the weighting coefficient 
𝑤(𝑥, 𝑦) for a pixel located at a distance (𝑥, 𝑦) from the 
center of the patch can be presented as follows: 

𝑤(𝑥, 𝑦) = 𝑒
షೣమశ೤మ

మ഑మ  (3) 
where x and y are the distances of the pixel from the 
center of the patch along the respective axes; 

σ – the parameter that determines the width of the 
Gaussian curve's "bell," i.e., the level of smoothing at the 
edges of the patches [16]. 

Thus, the coefficient value varies based on the 
pixel's distance from the center of the patch (3), allowing 
for the effective overlaying of overlapping parts, 
smoothing discrepancies in predicted values. 

Since the initial sample was limited, several 
additional steps were introduced to optimize the training. 

Firstly, the input data vector was limited to satellite 
data only. The complete input information contains more 
than 80 channels, which leads to overfitting in the case of 
a small number of observations. Using only satellite data 
allowed us to reduce the size of the input vector and 
decrease the risk of overfitting while ensuring sufficient 
informativeness for the model. 

Secondly, patches from the image were not selected 
sequentially without overlap but using a stride step of 1. 

This means that the next image covers most of the 
previous one, except for the first column of pixels in the 
case of a horizontal step and the top row in the case of a 
vertical step. This approach allows for an increase in the 
number of training examples and improves model 
generalization by utilizing the maximum amount of data 
from the available images. 

Thirdly, the following augmentations were used: 
horizontal flipping, vertical flipping, rotations of 30, 60, 
and 90 degrees, and various combinations of these 
transformations. These augmentations are permissible 
since field data are equivalent in any direction of capture. 
Deformations were not applied, only rotations and flips, 
which were accordingly applied to the output images as 
well. This ensures that each pixel of the input data 
corresponds to each pixel of the output regardless of the 
chosen augmentation. These measures help reduce the 
risk of overfitting and improve the model's robustness. 

The results obtained using the U-Net model reveal 
the significant potential of this approach in accurately 
forecasting yield. The model demonstrates high 
prediction accuracy. However, it is necessary to address 
one of the substantial drawbacks— the tendency of the 
proposed model to overfit. This aspect can significantly 
limit its effectiveness in real-world conditions, especially 
when access to a large amount of high-quality data is 
restricted. Due to its complexity, the U-Net model 
requires substantial data volumes for training, 
necessitating a meticulous approach to data collection 
and analysis. Therefore, the results obtained in limited 
conditions may not reflect the full potential of the 
approach, which is crucial to consider when testing and 
using it in practical tasks. 

Table 1 presents the accuracy metrics of linear 
regression, Table 2 shows the accuracy metrics of the 
proposed approach, and fig. 4 visualizes the obtained data. 

The results obtained using linear regression clearly 
demonstrate that the task of yield forecasting is very 
complex. The analyzed data have complex nonlinear 
dependencies that linear regression is not always able to 
adequately capture. This is evidenced by cases where the 
model produces negative yield predictions, which result 
from incorrect data interpretation. Such results indicate 
the necessity of using more sophisticated models capable 
of accounting for nonlinearity and greater data variability 
to achieve more accurate and reliable forecasts. 

Table 1 – Accuracy metrics of linear regression 

Field RMSE Forecasted Yield (t) Actual Yield (t) Accuracy 
Flora__Dahtaliya__22 0.6613 154.26 135.85 86.44% 
Flora__Teklivka__22 0.2644 88.71 77.77 85.93% 
East-West__Serby_26__23 0.2716 27.98 41.08 68.12% 
East-West__Serby_57__23 0.3355 82.60 115.99 71.21% 
East-West__Serby_69__23 0.3948 91.00 141.65 64.24% 
East-West__Serby_56__23 0.2396 -0.21 27.11 -0.76% 
Zhuravske__Field_3__22 0.2438 29.95 48.54 61.69% 
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Table 2 – Accuracy metrics of the proposed approach 

Field RMSE Forecasted Yield (t) Actual Yield (t) Accuracy 
Flora__Dahtaliya__22 0.6701 197.47 135.85 54.64% 
Flora__Teklivka__22 0.4496 115.60 77.77 51.36% 
East-West__Serby_26__23 0.2144 42.51 41.08 91.30% 
East-West__Serby_57__23 0.2565 115.83 115.99 94.78% 
East-West__Serby_69__23 0.2764 131.30 141.65 92.12% 
East-West__Serby_56__23 0.2122 32.27 27.11 70.24% 
Zhuravske__Field_3__22 0.1194 48.83 48.54 92.46% 
 

The proposed approach to yield forecasting 
significantly enhances the model's ability to detect 
dependencies in the data, as evidenced by a high accuracy 
of up to 95% in fields such as "East-
West__Serby_57__23" and "East-
West__Serby_69__23". This underscores the potential of 
more complex models for handling the nonlinear 
characteristics of data frequently encountered in 
agronomic research. 

On the other hand, the model's tendency to overfit 
is an obvious drawback, especially noticeable in the 
fields "Flora__Dahtaliya__22" and 
"Flora__Teklivka__22", where the accuracy is the 
lowest, approximately 55% and 51%, respectively. This 
indicates that the model may be overly optimized for the 
training dataset and unable to adequately generalize 
knowledge to new data, particularly when the available 
data does not fully represent all possible conditions. This 
is also partially evident in the field "East-
West__Serby_56__23", where the accuracy dropped to 
70.24%, which may indicate issues with accounting for 
certain agronomic conditions in the model. 

Examples of forecast visualizations are presented in 
fig. 5 and fig. 6. On the left part of the images is the index 
snapshot of the field, in the middle is the predicted yield, 
and on the right part is the actual yield. 

As previously mentioned, the system has great 
potential for further development and can become a 
powerful foundation for new research aimed at 
advancing the agricultural industry.  

The development of a method for generating and 
analyzing combinations of possible plant care options 
opens up new prospects for creating comprehensive 
decision-making systems [19]. This will enhance the 
accuracy of individualized forecasts for each plot and 
help determine the most effective strategies for 
agricultural practices based on a deep analysis of 
potential yield. 

The adaptation of computer vision methods using 
more optimized algorithms to reduce the computational 
complexity of the system will allow for the optimization 
of training and application processes of the model, 
thereby expanding its practical value in digital agronomy 
tasks [20] 

 
 

 

 

Figure 4 – Visualization of the obtained accuracy metrics 
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Figure 5 – Forecasting results, example 1 

 

 
Figure 6 – Forecasting results, example 2 

 

Conclusions from the research 

Accurate yield forecasting is a complex task with 
many uncertainties and unknown factors, significantly 
complicating problem-solving. An important aspect is 
detailed forecasting, which requires a specific data 
format and properly selected and tuned models.  

In this study, an analysis of the issues was 
conducted, existing solutions were reviewed, and an 
approach to solving the posed problems was proposed. 
The combination of classical machine learning methods 
with deep learning has great potential and shows high 
efficiency even with a limited dataset. 

To achieve high accuracy and stability, the system 

requires further enhancement of informational support, 

extended testing, and tuning. The limited dataset does not 

allow for a comprehensive analysis and obtaining reliable 

results. 

The proposed model demonstrates results indicating the 

prospects of this research direction and can be applied for 

the further development of approaches to solving 

agronomic problems, such as precise budget planning 

and optimization of agronomic measures to improve 

yield and prevent significant losses in critical situations. 
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ІНТЕГРАЦІЯ МЕТОДІВ МАШИННОГО ТА ГЛИБИННОГО НАВЧАННЯ  
ДЛЯ ПРОГНОЗУВАННЯ ВРОЖАЙНОСТІ СОНЯШНИКА 

 
Анотація. Практичний досвід прогнозування врожайності показує, що це складна багатофакторна задача, яка 

вимагає точних та надійних методів вирішення. Використання машинного та глибинного навчання є ключовим у 
досягненні кращих результатів у цифровій агрономії. Стаття присвячена побудові інтелектуальної системи 

прогнозування врожайності соняшника. На основі аналізу наукових публікацій та практичного досвіду, узагальнено 
основні проблеми обробки даних і запропоновано схеми їх вирішення. Основні етапи роботи включали дослідження 

поточного стану цифрової агрономії, вибір підходу, розробку методу обробки інформації, програмну реалізацію моделі 
та тестування. Ключовими викликами стали обмеженість наборів даних та складність вибору оптимального підходу 

для уникнення перенавчання. Поєднання різних методів аналізу дозволило створити потужну систему, яка переважає 
традиційні підходи, хоча потребує більше даних для навчання. Висновки дослідження показують, що методи машинного 
та глибинного навчання, такі як LightGBM і U-Net, разом із запропонованими методами обробки даних, досягають 

високої точності у прогнозуванні. Модель продемонструвала здатність до узагальнення знань на нові поля та до 
побудови детальних карт врожайності. Подальші дослідження включають розробку методу для генерації комбінацій 

варіантів догляду за рослинами, адаптацію методів комп’ютерного зору з оптимізованими алгоритмами для зменшення 
обчислювальної складності та розширення функціоналу системи з включенням аспектів кібербезпеки. Запропонована 

система значно підвищить ефективність прогнозування врожайності соняшника, сприяючи розвитку цифрової 
агрономії. 

 

Ключові слова. Сільськогосподарський сектор; прогнозування врожайності; супутникові дані; машинне 

навчання; комп'ютерний зір 
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