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INTEGRATION OF MACHINE LEARNING AND DEEP LEARNING
METHODS FOR SUNFLOWER YIELD PREDICTION

Abstract. Practical experience in yield forecasting demonstrates that it is a complex multifactorial task
requiring precise and reliable methods for resolution. The use of machine learning and deep learning is
crucial for achieving better results in digital agronomy. This paper is dedicated to the development of an
intelligent system for sunflower yield forecasting. Based on the analysis of scientific publications and
practical experience, the main issues of data processing are summarized, and schemes for their resolution
are proposed. The main stages of the work included the study of the current state of digital agronomy, the
selection of an approach, the development of a data processing method, the software implementation of the
model, and testing. The key challenges were the limited data sets and the complexity of choosing the optimal
approach to avoid overfitting. Combining different analysis methods allowed the creation of a powerful
system that surpasses traditional approaches, though it requires more data for training. The study's
conclusions show that machine learning and deep learning methods, such as LightGBM and U-Net, along
with the proposed data processing methods, achieve high accuracy in forecasting. The model demonstrated
the ability to generalize knowledge to new fields and to build detailed yield maps. Further research includes
the development of a method for generating combinations of plant care options, the adaptation of computer
vision methods with optimized algorithms to reduce computational complexity, and the expansion of the
system's functionality to include cybersecurity aspects. The proposed system significantly enhances the
efficiency of sunflower yield forecasting, contributing to the development of digital agronomy.
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agricultural lands. This approach will achieve high
forecasting accuracy by recognizing and accounting for
complex vegetation development patterns, going
beyond traditional analysis.

It is necessary to create a model capable of
forecasting yield with high accuracy and reliability,
based on comprehensive data analysis. To achieve this, a
large number of information sources need to be

Introduction

Today, digital agronomy is in a stage of
development and faces challenges, particularly in
yield forecasting using modern technologies. The
capabilities of forecasting methods in the agricultural
sector are quite limited. Traditional statistical methods
provide only approximate values of potential yield,

while artificial intelligence-based methods currently
cannot guarantee high reliability and informativeness,
as these technologies are aimed at forecasting the total
yield of the entire field, which significantly limits their
application. Therefore, considerable attention is paid
to the implementation of artificial intelligence in the
agricultural sphere, as this direction has great
potential, although it requires further research and
improvement.

The key task of this study is to develop a system
that includes an optimization approach to data
processing and artificial intelligence methods for
forecasting, which in combination should effectively
perform both local forecasts and global analysis of

considered, including satellite images in various spectra,
meteorological data, as well as specific field and crop
characteristics such as plant hybrid, planting density,
planting date, and chemical treatment history.

Based on these data, an approach will be developed
that takes into account key factors of agricultural
production, from the genetic characteristics of crops to
environmental conditions, ensuring high forecasting
accuracy.

Review of Existing Research

The most studied are traditional yield forecasting
methods. These methods are based on the application of
empirically established relationships determined through
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correlation analysis. They rely on historical data and
statistical studies of the interconnections between various
agronomic factors and the final field productivity.
Classical machine learning methods, such as decision
trees, support vector machines (SVM), linear and
multivariate regression, are often used to analyze these
dependencies and build forecasts. These methods allow
modeling complex dependencies between data, although
they have limitations in accounting for nonlinear
dependencies.

Previous studies have used vegetation indices to
establish relationships between them and the final field
productivity. By analyzing the correlation between
vegetation indices and actual yield, empirical equations
were developed that formed the basis of forecasting
models. This process involved directly deriving
dependencies from the collected data on the relationship
between indices and yield without resorting to complex
machine learning methods [1].

Researchers have also actively applied machine
learning methods to improve yield forecasting accuracy,
particularly through the efficient selection of key
parameters influencing the result. The use of regression
models allowed for a detailed analysis of the
dependencies between a set of input data and the final
yield. This approach contributed to the development of
more accurate forecasting models and opened up
possibilities for a deeper understanding of the impact of
various agronomic and environmental factors on crop
productivity [2]. However, a drawback of these methods
is their limited ability to generalize to new data,
particularly information about fields outside the training
sample.

To identify more complex relationships in the data,
such as weather conditions and plant genotype, deep
learning methods were used. The development of neural
networks, as well as their combination in complex
systems with integrated networks [3], allowed for deeper
and more specific information processing. This approach
ensured the detection of hidden dependencies between
various factors and the final field productivity, opening
new opportunities for accurate yield forecasting.

However, despite the high efficiency of deep
learning methods, researchers have not considered the
possibility of detailing forecasts to individual local areas
of the field. Developed mathematical models focus on
determining the overall total yield at the entire field level,
without taking into account the potential heterogeneity of
conditions or productivity of different areas. This
limitation reduces the potential use of these models for
precise agricultural management.

In their studies, specialists have resorted not only to
supervised learning methods but also applied
reinforcement learning approaches, expanding the
capabilities of deep neural networks. In particular, the use
of recurrent neural networks in combination with the g-

learning method achieved an average forecasting
accuracy of 93.7% [4], which is a significant
achievement for solving such a complex problem as yield
forecasting. However, this study focused on forecasting
the total yield, not extending its focus to detailed
forecasting for individual areas. Although theoretically,
the model could be adapted for such detailed forecasting,
researchers did not provide information on conducting
such experiments.

Traditional methods also include time series
analysis using the ARIMA method [5] and statistical
methods, in particular, kriging [6], which is often applied
in cases where the data is presented in a specific format
that requires the adjustment of the corresponding
mathematical model.

It is also worth noting that there are systems that
provide paid access for forecasting [7, 8] and for detailed
analysis of plant health status [9]. However, specific
accuracy indicators or examples of forecasts are not
provided in open access.

Definition of Research Direction

In this study, a comprehensive approach combining
decision tree-based methods with computer vision
techniques was chosen for forecasting. This approach
aims to leverage the advantages of both methods to create
more accurate and reliable predictions. The systems are
intended to complement each other, enhancing
capabilities and increasing the stability of forecasts. The
decision tree method ensures high prediction accuracy
based on numerical and categorical data, while computer
vision techniques provide additional information through
image analysis, allowing for consideration of visual
aspects of field conditions.

The models will analyze different aspects of
information using their unique interpretations. Decision
trees can effectively handle large volumes of data,
considering the impact of numerous factors such as
weather conditions, soil type, and agronomic practices.
Simultaneously, computer vision methods analyze
satellite images of fields, identifying visual patterns that
may indicate the state of vegetation and potential issues.
Their combination will enable a comprehensive
examination of available data and a more holistic analysis
of field vegetation, thereby creating the prerequisites for
effective and accurate forecasting.

Main part of the research

Considering the mentioned limitations imposed by
the unresolved issue of detailed forecasting and the
imperfection of current approaches, solving it will be a
significant step in the development of digital agronomy.
Implementing accurate and detailed forecasting will
improve the efficiency of agronomic production
processes, optimize resource use, and reduce costs. This
will enable more informed decisions regarding planting,
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fertilization, irrigation, and harvesting,
leading to increased yield and product quality.

From a scientific progress perspective, solving this
problem will make a significant contribution to the
development of agronomic sciences. A system capable of
providing detailed forecasts with high accuracy will
exceed the capabilities of current solutions. This will
enhance current agronomic practices and create a
foundation for further research in this direction. Such a
breakthrough in forecasting could open new horizons for
research in optimizing agrotechnical measures,
managing natural resources, and adapting to climate
change.

The aim of this study is to develop highly accurate
yield forecasting methods, which includes creating
detailed forecast maps. The main objective is to ensure
the reliability and accuracy of the obtained forecasts by
developing an efficient model capable of accounting for
various factors affecting yield. The study aims to achieve
high forecasting accuracy and create tools that will allow
these forecasts to be visualized as maps, reflecting the
local characteristics of fields.

The main tasks of the study are:

ultimately

— To develop a data processing algorithm to
maximize the accuracy that models can achieve when
trained on this data.

— To develop an efficient architecture for the
forecasting system that can fully exploit the potential of
the models used.

— To implement a yield forecasting system that
provides highly accurate detailed forecasts.

— To develop a wuser interface to simplify
information presentation and ease of experimentation.

— To analyze the obtained results and propose
possible further improvements.

For yield forecasting, it is important to consider
factors that directly affect plant conditions and,
consequently, their development: information about
weather conditions and the application of chemical
treatments in the field. Additionally, monitoring
indicators that provide expanded information about the
field and the plants within it are crucial: plant hybrid,
sowing date, sowing density, and satellite images.

Research on yield forecasting demonstrates that the
development and health status of plants can be effectively
tracked by analyzing the amount of absorbed solar
radiation [1; 2], which is supported by high correlations
and the ability of artificial intelligence models to make
accurate predictions based on this information [3; 4].
This is explained by the fact that plants use light for
photosynthesis, and thus the amount of absorbed light
directly correlates with their health and productivity.
Photosynthesis is a key process in the life of a plant,
during which sunlight is used to convert carbon dioxide
and water into oxygen and glucose, which serves as an
energy resource for growth and development. Hence, the

amount of absorbed solar radiation directly affects the
efficiency of photosynthesis: the more light is absorbed,
the more energy can be synthesized by the plant. This, in
turn, promotes better growth, development, and health of
the plant, providing it with the necessary conditions to
achieve maximum productivity. Therefore, by tracking
the amount of absorbed solar radiation, valuable
information about the condition of the plants and their
yield potential can be obtained.

By capturing reflected solar radiation, one can get
an idea of the extent to which it has been absorbed by the
plant. Reflected and absorbed solar radiation together
form the overall intensity of sunlight, which is relatively
stable. Even under conditions of limited resolution — in
this study, images with a resolution of 10 by 10 meters
are used — the obtained data provide valuable insights
into plant development, as confirmed by high
correlations achieved even when analyzing only a single
vegetation index [1].

In this study, vegetation indices are actively used
for the analysis of plant conditions, particularly NDVI,
NDWI, GLI, CLg, and CLr. These indices are crucial for
accurate yield forecasting as they reflect various aspects
of the physiological state of plants. These indices focus
on measuring the chlorophyll content in leaves, which is
an indicator of photosynthetic activity and the overall
health of plants [10].

Combining these indices allows for a
comprehensive analysis of the impact of different
weather conditions and management interventions on
yield, enabling an accurate determination of plant
conditions at any stage of their development. Such an
approach is critical for developing effective yield
forecasting models.

Ideally, it would be appropriate to analyze satellite
data in its pure, unmodified form, which would provide
the most complete picture of vegetation status and its
interaction with the environment.

However, in practice, access to pure, unprocessed
satellite data is often limited. Practical aspects of
obtaining and using satellite data often require
compromises, particularly due to limitations imposed by
data providers. The satellite data for this study is obtained
from SkyGlyph, which provides it exclusively in the
form of vegetation indices among the available options.

The aim of this study is to develop a system to
enhance the accuracy of yield forecasting. The main
focus is on minimizing deviations between the predicted
and actual yield figures. The task can be formulated as
follows.

To construct a detailed yield map, the field Y is
divided into individual plots y; € Y, i = 1,n, where n is
the number of plots in the field Y, and a separate forecast
is made for each plot. Let the predicted yield value be
denoted as

Vi = fo(x),
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where x; € X —the vector of input information describing
the state of plot i during the period from sowing to the
hundredth day after the sowing date inclusive;

X — data matrix of all field plots Y;

6 — forecast model parameters;

f — the functional relationship between the input
data of the field state and the yield, which is established
by machine learning methods.

Then the forecasting task can be described as
follows:

L(fy(x), y)) » min,i = 1,n,

where L — loss function that reflects the deviation of the
predicted values from the actual ones.

The input data for yield forecasting is extremely
voluminous and multidimensional. It encompasses a
wide variety of data, from weather conditions to specifics
of agronomic practices. To build an effective forecasting
model based on such data, a significant number of
observations need to be conducted. The complexity of the
information requires large volumes of data because the
more complex the information, the harder it is to identify
hidden dependencies and patterns for quality training of
the artificial intelligence model.

The need for a large number of observations for
analyzing multidimensional data in agronomic research
can be explained by the significant complexity of
interactions that exist between different agronomic
factors. Each of these factors-whether it be temperature,
humidity, soil type, precipitation levels, or solar radiation
— can uniquely affect yield. For the model to adequately
reflect these complex interactions and variability in
conditions, it must be trained on a sufficiently large
amount of data that provides a representative coverage of
all possible scenarios.

Additionally, each dimension in a multidimensional
dataset can contribute additional information that needs
to be integrated and analyzed in the context of other
dimensions. For example, the dependency of yield on
temperature may vary depending on soil moisture levels
or how these conditions have changed throughout the
growing season. Such multi-level dependency makes it
impossible to adequately generalize based on a small
amount of data, as this may lead to underestimating
important interactions or overestimating less significant
relationships.

Furthermore, to identify statistically significant
patterns in multidimensional data, it is necessary to have
enough data to reduce noise and detect true patterns
instead of random fluctuations. Without a large number
of observations, models can become overfitted, meaning
they become too specialized to the dataset they were
trained on and lose the ability to generalize to new data
or conditions, significantly reducing the quality of
predictions.

In this study, the sample size is limited due to
difficulties associated with obtaining data on harvested
crops, which requires individual negotiations with each
farm, and the lack of automation in the process of
uploading satellite images, leading to significant time
costs for replenishing the training sample. Consequently,
to effectively realize the potential of the available
information in the context of accurate yield forecasting,
a number of simplifications have been proposed. These
simplifications aim to optimize the model training
process, allowing for more accurate predictions based on
a limited amount of data.

Thus, the main task of data preprocessing is to
minimize their dimensionality while preserving the
maximum amount of information contained in them. The
process includes correlation analysis to select important
features, dimensionality reduction by finding minimum,
mean, and maximum values, and a two-stage outlier
removal based on z-score [14]. The algorithm is
presented in the study [11].

For forecasting the yield of individual plots in this
study, the LightGBM model [12] is applied. Given that
the number of available observations is limited, the use
of overly complex models, such as deep neural networks,
is found to be ineffective. This is because complex
models, under conditions of limited data, often lead to
overfitting, where the model adapts too closely to the
training sample and loses the ability to generalize to new
data.

Choosing an ensemble model of decision trees, such
as LightGBM, is a justified decision under these
conditions. This model allows for effective use of limited
data without overfitting due to its structure and
optimization algorithms. While LightGBM may not
detect very complex hidden patterns in the data as some
other artificial intelligence models can, it is effective in
finding fundamental dependencies, enabling sufficiently
high forecasting accuracy. Thanks to its properties,
LightGBM ensures high efficiency in forecasting and
generalizing knowledge in unknown conditions.
Therefore, LightGBM becomes the optimal choice for
solving the task of predicting the yield of individual plots.

To compensate for the limitations associated with
the local nature of LightGBM's forecasting, which does
not take into account contextual information about
surrounding land plots, the study employs a computer
vision model with a U-Net architecture [15]. This model
can segment the field into productivity zones using
satellite imagery data, thereby providing the ability to
assess the overall condition of the zone in which a
specific plot is located.

Through field segmentation, the U-Net model
allows for the identification of different productivity
zones, taking into account direct information about the
10 by 10 meter plot and details about the condition of
neighboring plants, possible soil density fluctuations, the
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presence of underground water flows, the overall
adaptation of plants to specific growing conditions, and
other indicators that can be inferred from visual
information. This information enables a "broader view"
and a better understanding of the general conditions for
plant development in the studied area.

This approach significantly expands the potential
of the LightGBM model, as information about which
performance segment each plot belongs to is added to
the input parameters. In other words, significant
progress in yield forecasting accuracy is achieved
through a combined approach that includes extended
visual analysis along with deep vector analysis. The
extended visual analysis allows the model to identify
spatial relationships and detect complex patterns that
often go unnoticed but may arise due to phenomena
such as terrain fluctuations or water flows. This analysis
is complemented by deep vector analysis, which
focuses on studying individual plots of the field. This
enables a detailed assessment of their condition, which
is critical for the accuracy of overall forecasts. The
synergy created by the combined use of these two
methods significantly enhances the accuracy and
reliability of predictions.

As a result of applying the described data
processing methods, an information vector was created
for each field plot, describing its development during
maturation. The Light Gradient Boosting Machine
(LightGBM) was used for training the predictive model,
which is an ensemble model that sequentially builds and
complicates decision trees using gradient descent to
optimize loss. The use of LightGBM allowed for
effective yield forecasting, providing the ability to
analyze each individual plot of the field in isolation.

Mathematically, LightGBM  optimizes the
following objective function:

L(O) =X Iy f(x;0)) + 274, 2(g;) (1)

where l(yl-, s 0)) — the loss function that evaluates
the discrepancy between the actual value y; and the
predicted value f based on the model parameters 6;

g — decision trees, which together form an ensemble
model,

m — a set of trees in the model;

0(g;) — the regularization term, which controls the
model's complexity, particularly the penalty for the
number and depth of decision trees [12].

A key feature of LightGBM (1) is its ability to
process large volumes of data at high speed, thanks to the
optimized distribution of tree branching points based on
histograms and the use of gradient boosting with
Gradient-based One-Side Sampling (GOSS) and
Exclusive Feature Bundling (EFB) [13]. These
technologies significantly reduce computational costs
and improve the accuracy of analyzing each individual

field plot, allowing detailed yield forecasting considering
local agronomic conditions.

To provide contextual information, a specialized
computer vision model based on the U-net architecture
was developed. This model is designed to analyze
dependencies in data over large areas without being
limited to local subspaces, enabling a global assessment
of the state of agricultural lands. Due to its deep
segmentation capability, the model effectively identifies
areas with potentially high yield and delineates zones
where lower productivity is expected.

The U-net model has an encoder-decoder structure,
where the encoder sequentially reduces the image size
while extracting key features, and the decoder expands
the reduced image back to its original size while retaining
important details. Mathematically, each layer in U-net
can be described as follows:

a*t =oW'xa' +bh) ()

where * denotes the convolution operation;

o — non-linear activation function (e.g., ReLU);

W', b' — weights and biases at the [-th layer;

a' — activation at the [-th layer;

Convolutional layers effectively process spatial
information,  while  up-convolution  (transposed
convolution) layers restore the details and dimensions of
the image [15]. Due to this structure, U-net can assess
dependencies in data over large areas, not limited to
analyzing only local subspaces, and shows high
efficiency in performing satellite image segmentation
tasks [17; 18]. This allows the model (2) to globally
evaluate the condition of agricultural fields, identifying
areas with potentially high yield and highlighting zones
where lower productivity is expected.

Since agricultural fields have diverse sizes, a
method of dividing images into smaller parts, known as
patches, was applied for efficient data processing, as
illustrated in fig. 1 and fig. 2. This approach ensures
detailed segmentation of each part of the field separately,
after which the obtained patches are combined to form a
cohesive segmented image of the field. This process
simplifies the processing of large land areas and enhances
segmentation accuracy through detailed analysis of each
fragment.

Figure 1 — An example of extracting an image patch
for subsequent transformation by a neural
network into part of the original image [15]

229



Texuonoeii ynpasnints po36umrkom

Figure 2 — An example of patch overlaying
to form a continuous image

In the process of patch overlaying, a method with
weighting coefficients was used, allowing for a smoother
integration of image parts. Each pixel in the overlapping
areas receives a weight depending on its distance from
the center of the patch, contributing to a smoother
transition between segments. This approach minimizes
the risk of sharp differences at the patch boundaries,
ensuring high quality of the final segmented image and
accurate representation of yield variability in the fields.
The formula for determining the weighting coefficient
w(x,y) for a pixel located at a distance (x,y) from the
center of the patch can be presented as follows:

wx,y) =e 20 3)
where x and y are the distances of the pixel from the
center of the patch along the respective axes;

o — the parameter that determines the width of the
Gaussian curve's "bell," i.e., the level of smoothing at the
edges of the patches [16].

Thus, the coefficient value varies based on the
pixel's distance from the center of the patch (3), allowing
for the effective overlaying of overlapping parts,
smoothing discrepancies in predicted values.

Since the initial sample was limited, several
additional steps were introduced to optimize the training.

Firstly, the input data vector was limited to satellite
data only. The complete input information contains more
than 80 channels, which leads to overfitting in the case of
a small number of observations. Using only satellite data
allowed us to reduce the size of the input vector and
decrease the risk of overfitting while ensuring sufficient
informativeness for the model.

Secondly, patches from the image were not selected
sequentially without overlap but using a stride step of 1.

This means that the next image covers most of the
previous one, except for the first column of pixels in the
case of a horizontal step and the top row in the case of a
vertical step. This approach allows for an increase in the
number of training examples and improves model
generalization by utilizing the maximum amount of data
from the available images.

Thirdly, the following augmentations were used:
horizontal flipping, vertical flipping, rotations of 30, 60,
and 90 degrees, and various combinations of these
transformations. These augmentations are permissible
since field data are equivalent in any direction of capture.
Deformations were not applied, only rotations and flips,
which were accordingly applied to the output images as
well. This ensures that each pixel of the input data
corresponds to each pixel of the output regardless of the
chosen augmentation. These measures help reduce the
risk of overfitting and improve the model's robustness.

The results obtained using the U-Net model reveal
the significant potential of this approach in accurately
forecasting yield. The model demonstrates high
prediction accuracy. However, it is necessary to address
one of the substantial drawbacks— the tendency of the
proposed model to overfit. This aspect can significantly
limit its effectiveness in real-world conditions, especially
when access to a large amount of high-quality data is
restricted. Due to its complexity, the U-Net model
requires substantial data volumes for training,
necessitating a meticulous approach to data collection
and analysis. Therefore, the results obtained in limited
conditions may not reflect the full potential of the
approach, which is crucial to consider when testing and
using it in practical tasks.

Table 1 presents the accuracy metrics of linear
regression, Table 2 shows the accuracy metrics of the
proposed approach, and fig. 4 visualizes the obtained data.

The results obtained using linear regression clearly
demonstrate that the task of yield forecasting is very
complex. The analyzed data have complex nonlinear
dependencies that linear regression is not always able to
adequately capture. This is evidenced by cases where the
model produces negative yield predictions, which result
from incorrect data interpretation. Such results indicate
the necessity of using more sophisticated models capable
of accounting for nonlinearity and greater data variability
to achieve more accurate and reliable forecasts.

Table 1 — Accuracy metrics of linear regression

Field RMSE Forecasted Yield (t) Actual Yield (t) Accuracy
Flora_Dahtaliya 22 0.6613 154.26 135.85 86.44%
Flora Teklivka 22 0.2644 88.71 77.77 85.93%
East-West _Serby 26 23 0.2716 27.98 41.08 68.12%
East-West  Serby 57 23 0.3355 82.60 115.99 71.21%
East-West Serby 69 23 0.3948 91.00 141.65 64.24%
East-West Serby 56 23 0.2396 -0.21 27.11 -0.76%
Zhuravske Field 3 22 0.2438 29.95 48.54 61.69%
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Table 2 — Accuracy metrics of the proposed approach

Field RMSE Forecasted Yield (t) Actual Yield (t) Accuracy
Flora Dahtaliya 22 0.6701 197.47 135.85 54.64%
Flora_Teklivka 22 0.4496 115.60 77.77 51.36%
East-West _Serby 26 23 0.2144 42.51 41.08 91.30%
East-West__Serby 57_ 23 0.2565 115.83 115.99 94.78%
East-West__Serby 69_ 23 0.2764 131.30 141.65 92.12%
East-West__Serby_56_ 23 0.2122 32.27 27.11 70.24%
Zhuravske Field 3 22 0.1194 48.83 48.54 92.46%

The proposed approach to yield forecasting
significantly enhances the model's ability to detect
dependencies in the data, as evidenced by a high accuracy
of up to 95% in fields such as "East-
West__Serby 57 23" and "East-
West_ Serby 69 23". This underscores the potential of
more complex models for handling the nonlinear
characteristics of data frequently encountered in
agronomic research.

On the other hand, the model's tendency to overfit
is an obvious drawback, especially noticeable in the
fields "Flora Dahtaliya 22" and
"Flora_Teklivka 22", where the accuracy is the
lowest, approximately 55% and 51%, respectively. This
indicates that the model may be overly optimized for the
training dataset and unable to adequately generalize
knowledge to new data, particularly when the available
data does not fully represent all possible conditions. This
is also partially evident in the field "East-
West_ Serby 56 23", where the accuracy dropped to
70.24%, which may indicate issues with accounting for
certain agronomic conditions in the model.

Examples of forecast visualizations are presented in
fig. 5 and fig. 6. On the left part of the images is the index
snapshot of the field, in the middle is the predicted yield,
and on the right part is the actual yield.

As previously mentioned, the system has great
potential for further development and can become a
powerful foundation for new research aimed at
advancing the agricultural industry.

The development of a method for generating and
analyzing combinations of possible plant care options
opens up new prospects for creating comprehensive
decision-making systems [19]. This will enhance the
accuracy of individualized forecasts for each plot and
help determine the most effective strategies for
agricultural practices based on a deep analysis of
potential yield.

The adaptation of computer vision methods using
more optimized algorithms to reduce the computational
complexity of the system will allow for the optimization
of training and application processes of the model,
thereby expanding its practical value in digital agronomy
tasks [20]
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Figure 4 — Visualization of the obtained accuracy metrics
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Figure 5 — Forecasting results, example 1
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Figure 6 — Forecasting results, example 2

Conclusions from the research

Accurate yield forecasting is a complex task with
many uncertainties and unknown factors, significantly
complicating problem-solving. An important aspect is
detailed forecasting, which requires a specific data
format and properly selected and tuned models.

In this study, an analysis of the issues was
conducted, existing solutions were reviewed, and an
approach to solving the posed problems was proposed.
The combination of classical machine learning methods
with deep learning has great potential and shows high
efficiency even with a limited dataset.

To achieve high accuracy and stability, the system
requires further enhancement of informational support,
extended testing, and tuning. The limited dataset does not
allow for a comprehensive analysis and obtaining reliable
results.

The proposed model demonstrates results indicating the
prospects of this research direction and can be applied for
the further development of approaches to solving
agronomic problems, such as precise budget planning
and optimization of agronomic measures to improve
yield and prevent significant losses in critical situations.
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IHTETPAIIA METOJIB MAIIKMHHOI'O TA I'IMBUHHOT'O HABYAHHS
JUISI ITIPOTHO3YBAHHSA BPOKAVHOCTI COHAIITHAKA

Anomauia. [Ipakmuynuti 00c8i0 NPOZHO3YBAHHS BPONCAUHOCMI NOKA3YE, WO Ye CKIadHa bazamogakmopHa 3adaua, sKa
8uUMaz2ae MOYHUX Ma HAOIUHUX MemoOié upiuenns. Bukopucmanna mawunno2o ma 21uOUHHO20 HAGYAHHA € KIIOYOBUM )
odocseHenni Kpawux pesynomamis 'y yugposit acponomii. Cmamms npucesuena nobyoosi iHmenekmyanibhoi cucmemu
npoeHo3ysanHts 8podcainocmi conawnuka. Ha ocnosi ananizy maykoeux nybnikayiti ma npakmuiHo2o 0060y, y3a2anbHeHO
OCHOBHI npobiemu 0OpobKU Oamux i 3anponoHoeamno cxemu ix eupiwenus. OcHoHi emanu poOOmMu GKMOUANU OOCHIOHCEHHS
nomouHo20 cmawny yugposoi azponomii, eubip nioxody, pospobky memooy o6pobru ingopmayii, npocpamuy peanizayiio mMooeui
ma mecmyeants. Knrouosumu UKIUKamu cmaiu oOMedlceHicms Habopie OAHUX Ma CKAAOHICMb GUOOPY ONMUMATLHO20 NIOX00Y
0715 yHUKHenHs nepenasyanns. Iloeonanns piznux memooie ananizy 003801UN0 CIGOPUMU NOMYICHY CUCTEMY, KA nepesaicac
mpaouyitini nioxoou, xoua nompeodye 6invuie OaHUX 0151 HAGYaHHsA. Bucnoeku 00cniodxcenns nokasyoms, wo mMemoou MauuHHO20
ma enubunno2o naguanus, maxi ax LightGBM i U-Net, pazom i3 3anpononoganumu memooamu oOpodKu Oanux, 00caeaioms
sucokoi moynocmi y npocnosyeauui. Mooenv npodemoncmpysana 30amuicms 00 y3a2anbHeHHs 3HAHb HA HOGI NOs md 00
no6y0osu demanvHux Kapm gpoxcaiinocmi. 1100anvii 00CiOHCeHHs 8KIOUAIOMb PO3POOKY Memooy 0ns 2enepayii KOMOIHayi
eapianmie 0027140y 3a pOCIUHAMY, A0ANMAYII0 MemoOié KOMN 10MepHO20 30py 3 ONMUMI308ANUMYU ANCOPUMMAMU OIS 3MEHULEHHS
0064UCTI08ANLHOT CKIAOHOCMI A PO3WUPEHHS YHKYIOHATY cucmeMu 3 6KIIOYeHHAM acnekmig Kibepbesneku. 3anpononosana
cucmema 3HAYHO NIOBUWUMDL epeKMUBHICMb NPOSHO3YBAHHA BPOJICAUHOCMI COHAWHUKA, CHPUAIOYU PO3BUMKY Yuppoeoi
azpoHoMii.
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