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MODERN SMALL NETWORKS FOR IMAGE CLASSIFICATION.
FEATURE ANALYSIS

Abstract. With the increasing demand for deploying deep learning models on resource-constrained devices,
such as smartphones, loT sensors, and edge computing platforms, the need for efficient convolutional
neural networks (CNNs) has become paramount. This paper offers a comprehensive review of several state-
of-the-art lightweight CNN architectures designed to address these challenges by reducing computational
complexity and memory usage, while maintaining competitive performance in image classification tasks.
Key architectures reviewed include MobileNets, ShuffleNet, DiceNet, and ESPNet, each of which employs
distinct strategies to optimize network efficiency. MobileNets introduce the concept of depthwise separable
convolutions, which decompose the standard convolution operation into a depthwise convolution and a
point-wise convolution (Ix1). This drastically reduces the number of parameters and computations
compared to traditional convolutions. ShuffleNet, on the other hand, leverages group convolutions and
channel shuffling to enhance efficiency, allowing feature maps to be split and recombined, which reduces
computational cost without significantly compromising accuracy. DiceNet builds upon these concepts by
introducing multi-branch architecture with different dilation rates to capture features at multiple scales,
enhancing both accuracy and efficiency in low-resource environments. ESPNet employs efficient spatial
pyramidal structures, along with point-wise convolutions, to handle diverse spatial features at different
scales while being highly computationally efficient. Despite these advancements, a common bottleneck
across these architectures is the reliance on point-wise (1x1) convolutions, which, while more efficient than
standard convolutions, still contribute significantly to the overall computational cost, particularly in deeper
layers of the network. Furthermore, filter sizes are often optimized for performance in a cloud-based setting
but may not be ideal for edge environments where computational and energy efficiency are crucial. We see
the potential in changing filter sizes in some layers to 2x2 which is the smallest possible filter for spatial
information extraction. Also it worth paying attention to the way the information is spread across channels
as well as how the channels number is formed by replacing IxI convolution with a generic but yet
predictable mathematical operation.

Keywords: convolutional neural networks; image classification; computer vision; IoT

Neural networks, specifically deep learning models

Introduction like CNNs, are designed to automatically learn features

In recent years, neural networks, particularly
convolutional networks  (CNNs), have
revolutionized image recognition by enabling systems to
process and classify images with remarkable accuracy.
The deployment of such systems on mobile and edge
devices has become increasingly significant, driven by
the growth of mobile applications, autonomous systems,
and the Internet of Things (IoT). This shift allows for
real-time processing and decision-making at the edge of
the network, reducing the need for cloud-based computa-
tion and mitigating latency and privacy concerns.

neural

from input images, enabling them to identify patterns
such as shapes, textures, and objects. CNNss, in particular,
have gained popularity in image recognition due to their
ability to handle spatial data efficiently.

Deep learning automates the learning process,
producing models capable of superior generalization
across different tasks. These models have become
integral in various applications, including facial
recognition, augmented reality, autonomous vehicles [8],
video surveillance [6; 7] and medical diagnostics.

Standard CNNs often have high latency due to large
model sizes and extensive computations. Optimizing
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models for inference speed, memory efficiency, and
reduced Floating Point Operations Per Second (FLOPs)
ensures they can process data fast enough for these real-
time applications.

Large neural networks not only consume more
resources but also introduce higher latency in image
recognition tasks. For real-time applications any delay in
processing could be detrimental. Therefore, it is crucial
to design models that reduce latency without sacrificing
accuracy.

Many real-world applications of deep learning, such
as mobile apps, embedded systems, and IoT devices,
involve hardware with limited computational resources,
memory, and power. Standard deep learning models like
VGG [2] or ResNet [4] are computationally heavy and
unsuitable for such environments without significant
optimization. Also, despite optimizations, neural
networks still demand considerable computational
resources and running them on mobile devices can drain
battery life quickly. Edge devices in remote or mobile
applications are particularly sensitive to power
constraints. This has led to ongoing research into
lightweight architectures such as MobileNets [11 — 13],
ShuffleNet [14] and the recently proposed DiCENet [18].
These networks make it feasible to run high-performing
models on low-power devices without sacrificing much
accuracy.

While progress has been made in deploying neural
networks for image recognition on mobile and edge
devices, several limitations remain:

Hardware Limitations: Although mobile
processors and edge computing hardware are becoming
more powerful, they still lag behind server-grade GPUs
and TPUs in terms of computational capability. Future
developments in specialized hardware, such as
neuromorphic chips or low-power Al accelerators, are
expected to further enhance on-device neural network
performance.

Model Optimization Trade-offs: Reducing the
size and complexity of models often results in a trade-off
between performance and accuracy. While techniques
like model pruning and quantization help in reducing
model size, they may also lead to a loss in recognition
accuracy, especially in complex environments.

There are also other limitations such as continuous
learning on edge devices without frequent updates from
the cloud or interoperability and standards that create
challenges in deploying neural networks across different
devices and platforms.

The purpose of the article

The purpose of this article is to provide comparative
analysis of existing efficient CNNs and their features,
development of further improvement recommendations
and setting the task of network accuracy improvement
with respect to its computational cost.

Efficient convolutional neural networks

The main building block of a CNN is a convolution
layer which is responsible for spatial feature extraction.
A lot of research has been done around the convolution
layer itself [1] as well as the entire blocks which can
incorporate one or more convolutional layers [2 — 4].
Other investigations are related to alternative activation
functions, regularization or parameter optimization [5].

We discuss the following CNNs: MobileNet [11],
MobileNet V2 [12] and MobileNet V3 [13], ShuffleNet
[14], ShuffleNet V2 [15], ESPNetvl [16] and DiCENet
[18] and SqueezeNe t[19] and of course we will refer to
AlexNet [1] as a baseline for accuracy.

AlexNet. The network that started it all. Since the
innovation of LeNet network in 1980s [20] convolutional
neural networks haven’t been evolving until AlexNet
emerged in 2012 taking the 1% place in ImageNet
competition. This model gives the top-5 accuracy of
83.0% and top-1 accuracy of 62.5% as per their reports.

This network consists of 8 layers with 5 first layers
being convolutional and 3 last layers being fully
connected. Due to computational resources limitation of
that time the original network had specific architecture
which divides some convolutional and some fully
connected layers into two separate ones to train them on
2 different GPUs. Thanks to modern processing libraries
it is possible to combine back each separated layer and
present it as a single solid one.

Some other important features that AlexNet
proposes are the use of ReLU [21] activation function as
a nonlinearity function as well as local response
normalization and overlapping pooling.

It worth mentioning that such a big network tends
to overfit even using such big datasets as ImageNet so the
authors also used the dropout [22] of 0.5 during training
which positively affected training results. A neuron is
removed from the neural network during dropout with
specified probability. A neuron that is dropped does not
make any contribution to either forward or backward
propagation. So every input is processed by a separate
neural network architecture but all architectures share the
same weights. The acquired weight parameters are
therefore more reliable and less prone to overfitting.

The model has 61.1M parameters which was (and
still is) considered to be quite a substantial number.

SqueezeNet. The model was proposed in 2016 by
Forrest N. Iandola et al with the primary goal of reducing
the network size while preserving accuracy. The authors
chose the AlexNet as a baseline for inference accuracy.
The authors list the following advantages of smaller
networks:

1. Less communication between servers during
distributed training;

2. Less bandwidth is required for uploading new
model onto the devices over-the-air;

222



Ynpaeninusa pozsumrxom cknaonux cucmem (60 — 2024)

ISSN 2219-5300

3. Smaller CNNs are more feasible to deploy on
limited-resources devices such as IoT devices, mobile
phones or other embedded devices.

The model’s main aim is to reduce the size on a disk
consumed by the network. Most popular networks make
heavy use of 3x3 convolutional layers which are proved
to be the most effective in deep neural networks. Though
it is admitted that 1x1 convolutional layers have 9 times
fewer learnable parameters, however they provide
drastically less spatial information. Another conceptual
idea is to reduce the number of input channels to the
remaining 3x3 filters. A squeeze layer is proposed to
decrease the number of input channels for 3x3
convolutional filers.

A module called Fire module is proposed. The
module represents design decision at a microarchitecture
level which defines how a basic network building block
should look like. The term of microarchitecture was also
introduced by Forrest N. ITandola et al in this document
and defines microarchitecture as architecture of high-
level building block or a module comprised of multiple
convolutional layers with a specific fixed organization.

The fire module consists of a small 1x1 squeeze
layer which reduces the number of input channels to the
next expansion layer, which in turn consists of 1x1 and
3x3 filters. The expansion layer is called so because it
expands back the number of channels after the squeeze
layer. The amount of 1x1 filters in squeeze later as well
as 1x1 and 3x3 filters in expansion layer is controlled by
hyper parameters that effectively allows to modify the
network architecture on module level.

The network consists of 1% convolutional layer,
followed by 8 fire modules, 3 maxpool and 1 averagepool
layers and ending with the final 1x1 convolutional layer
fed into softmax unit for classification which results in
22 layers in total (since fire module consists of 2 layers).
The use of 1x1 convolutional layer instead of fully
connected one was inspired by the NiN[23] and is also
known to reduce the number of parameters.

Important to note that authors of SqueezeNet
proposed a more disciplined approach to searching the
novel CNN architectures. The authors provided
comparison for model efficiency based on squeeze ratio
and 3x3 filters in expand layer ratio. The results showed
that the best accuracy can be achieved with the squeeze
ratio equals to 1 (which effectively means no squeeze)
and 3x3 filters taking 100 of expand layer, however
consuming more memory. Accuracy doesn’t correlate
linearly to squeeze/expand ratio changes which gives
authors the way to propose the best accuracy/model size
ratio.

MobileNet. MobileNet V1 was originally
developed by Andrew G. Howard et al in 2017. [11] It
leverages the performance of depthwise separable
convolution inspired by Xception network [24] as many
other modern small networks do.

The standard convolution operation has the effect of
filtering features based on the convolutional kernels and
combining features to produce a new representation. The
filtering and combination steps can be split into two steps
via the use of factorized convolutions called depthwise
separable convolutions for substantial reduction in
computational cost.

As stated above depthwise separable convolution
consists of depthwise convolution and pointwise
convolution. First a depthwise convolution is used by
applying individual spatial filters to feature map channels
and then pointwise convolution in a form of 1x1
convolution is applied to create a linear combination of
depthwise convolution outputs as shown on Figure 3.

As mentioned in the paper standard convolutions
have the computational cost of:

DK DK M- N - DF - DF (1)

And depthwise separable convolutions costs:
DK -DK-M: -DF-DF+M:-N-DF-DF (2)

Using depthwise separable convolution we get a
reduction in computation of:

1/N+1/(D_k*2) 3)

Because MobileNet uses 3x3 filters each its
depthwise separable convolutional layer gives
approximately 9 times reduction in computation.

For a feature map of size 112x112x32 applying
standard convolutional filter of size 3x3(x32) 32 times
results in  3x3x32x32x112x112 = 115,605,504
computations.

The same can be achieved with depthwise separable
convolution using only  3x3x32x112x112  +
+ 32x32x112x112 = 3,612,672 + 12,845,056 =
= 16,457,728 computations which is 7.02 times better
than full convolutional layer.

3x3 Depthwise Conv
I
BN
|
RelU
[
1x1 Conv
I
BN
I
RelU

Picture — Depthwise separable convolutional layer [24]
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MobileNet consists of 28 layers with only the 1st
layer being fully convolutional and other layers being
depthwise separable convolutional layers and the last
fully connected layer preceding the softmax unit.

A model provides the following hyperparameters
for tuning the network: width multiplier hyperparameter
and resolution multiplier hyperparameter. The values of
them are intended to change the accuracy and size of the
model as per user needs. The width multiplier o
essentially represents the number of channels on each
layer compared to the original structure. Typical values
for it are (0.25, 0.5, 0.75, 1). a = 1 is the baseline
MobileNet and a < 1 are reduced MobileNets. Width
multiplier has the effect of reducing computational cost
and the number of parameters quadratically by roughly
a2.

The second hyper-parameter to reduce the
computational cost of a neural network is a resolution
multiplier p. The parameter is applied to the very first
layer in the network, essentially to the input image. This
parameter reduces the size of the input image and internal
representation of every subsequent layer is reduced by
the same multiplier. Resolution multiplier also has the
effect of reducing computational cost by p2.

Results of the paper show that at similar
computation and number of parameters, making
MobileNets thinner is 3% better than making them
shallower.

On ImageNet classification task MobileNet 1.0 has
Top-1 accuracy of 70.6%, 4.2M parameters with 569M
MAdds.

MobileNetV2. Introduced in 2019 MobileNetV2
[12] is the next iteration of MobileNet [11]. The basic
model structure remains the same and also makes use of
depthwise separable convolution, however, introduces
inverted residual blocks. Inverted residual blocks create
connections between thin layers as opposed to classical
residual blocks that connect expansion layers.

The inverted residual blocks appear similar to
residual block where each block contains an input
followed by several bottlenecks then followed by
expansion [25]. However, inspired by the intuition that
the bottlenecks actually contain all the necessary
information, while an expansion layer acts more like an
implementation detail that accompanies a non-linear
transformation of the tensor, the authors suggest using
shortcuts directly between the bottlenecks. The shortcuts
allow the network to learn better using the same principle
as ResNet does, but the shortcuts connect narrow layers
instead of wide ones which also saves computation.

A network block structure is defined by a 1x1
expansion followed by depthwise
convolutions and a 1x1 projection layer. The input and
output are connected with a residual connection if and
only if they have the same number of channels.

convolution

The architecture of MobileNetV2 contains the
initial fully convolution layer with 32 filters, followed by
19 residual bottlenecks layers. Model uses ReLU6 as the
non-linearity because of its robustness when used with
low-precision computation [11]. The kernel size is
always 3 x 3 as is standard for modern networks.

On ImageNet classification task MobileNetV2 1.0
has Top-1 accuracy of 72.0%, 3.4M parameters with
300M MAdds.

MobileNetV3. Presented in 2019 by authors from
Google MobileNetV3 [13] became the latest iteration of
MobileNets family.

Authors used Platform-Aware NAS for Block-wise
Search approach which then followed by NetAdapt for
Layer-wise Search. In this way authors automated the
search for a better network structure.

MobileNetV3 uses lightweight attention modules
[28] based on squeeze and excitation in the bottleneck
structure. The module is placed after the depthwise filters
in the expansion in order for attention to be applied on
the largest representation. Layers are also upgraded with
modified swish nonlinearities [26, 27]. Both squeeze and
excitation as well as the swish nonlinearity use the
sigmoid which can be inefficient to compute as well
challenging to maintain accuracy in fixed point
arithmetic, so the sigmoid is replaced with the hard
sigmoid nonlinearity.

Also, the  model  contains  redesigned
computationally expensive layers. During development it
was found out that the last convolutional layer and the
first convolutional layer are more expensive than others.
The last 1x1 convolutional layer is pretty
computationally heavy but also is critical for prediction
so it is impossible to remove it, however authors
managed to move the layer past the average pooling
layer. In this way the expensive 7x7 convolutional layer
could be replaced with 1x1 spatial layer. For the first
convolutional layer authors proposed to use h-swish
implemented as piece-wise function nonlinearity instead
of ReLU6 (h-swish is a little bit faster) and also to reduce
the number of filters from 32 to 16, they proved that this
reduction resulted in almost no loss in accuracy.

As a conclusion this network’s main advantage
compared to MobileNetV2 is use of h-swish nonlinearity
combined with quantization. MobileNetV3 provides -
Large and -Small models to cover variety of
performance/accuracy requests.

On ImageNet classification task MobileNetV3-
Large 1.0 has Top-1 accuracy of 75.2%, 5.4M parameters
with 219M MAdds. MobileNetV3-Small has Top-1
accuracy of 67.4%, 2.5M parameters with 56M MAdds.

ShuffleNet. This architecture was introduced in
2017 by Xiangyu Zhang et al from Megyvii Inc. [14] The
autors note that popular large architectures such as
Xception or ResNeXt become less efficient for small
networks because of costly 1x1 convolutions. The
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architecture uses pointwise group convolutions to reduce
the complexity of 1x1 pointwise convolutions and to
efficiently share information between channel groups it
uses channel shuffle operation.

ShuffleNet employs group convolutions with the
number of groups varying from 3 to 8. It is noted that
sequentially using multiple group convolutions leads to
significant information loss because every group
convolution gets information from only a group of
channels from previous layer rather than the whole layer.
Straight sequential using of group convolutions without
information sharing such as pointwise convolution leads
to a group getting information from only a small part of
previous layer. Authors propose to replace expensive 1x1
pointwise convolution for information sharing with
cheap channel shuffle operation.

Channel shuffle operation takes GConv layer output
with g groups each of which has n channels resulting in
g x n channels and reshapes their dimension into (g, n).
This matrix is then transposed and flattened back and this
result is provided as an input to the next channel.

In addition, in ShuffleNet depthwise convolution
only performs on bottleneck feature maps. Even though
depthwise convolution usually has very low theoretical
complexity, it may be difficult to efficiently implement
on lowpower mobile devices, which may result from a
worse computation/memory access ratio compared with
other dense operations.

ShuffleNet architecture contains 50 layers while
MobileNet only has 28 layers. Making the model
shallower by removing half of blocks thus reducing the
number of layers to 26 slightly decreases accuracy but the
best performance can be achieved by using 50 layers.

On ImageNet classification task ShuffleNet 1.0 has
Top-1 accuracy of 67.6%, at 140M FLOPs.

We are sure it is important to note that group
convolutions with channel shuffling have their drawback
in that the number of groups is limited to relatively small
number which makes groups quite big in deeper layers
when the number of channels increases and as a result
group convolution becomes heavy operation.

ShuffleNet V2. ShuffleNet V2 is an evaluation of
ShuffleNet V1 [14] and was proposed in 2018 by
Ningning Ma at al. [15]

The paper mainly assesses theoretical metrics
accuracy of GFLOPs compared to real performance on
different devices. One of things to consider is memory
access cost (MAC) can significantly influence real
performance due to limited high speed cache on device.
In general the following guidelines are discussed and
proposed by the research:

* (G1) Equal channel width minimizes memory
access cost (MAC).

* (G2) Excessive group convolution increases
MAC.

* (G3) Network fragmentation reduces degree of
parallelism.

* (G4) Element-wise operations are non-negligible.

ShuffleNet V2 design uses ShuffleNet as the base
and introduces changes to comply with the stated above
guidelines.

ShuffleNet V2 unit is based on unit from [14] but
contains the following differences. An introduced
channel split operation splits incoming channels ¢ into
two branches with ¢ — ¢’ and ¢’ channels, respectively.
One branch remains untouched while the other branch
applies sequentially 1x1 convolution, 3x3 depth-wise
convolution and 1x1 convolution with each convolution
having the same number of input and output channels to
satisfy G1. The network uses ¢’ = ¢/2 in its original
version.

After convolution, the two branches are
concatenated so the number of channels stays the same
(G1). The same “channel shuffle” operation as in [14] is
then used to enable information exchange between the
two branches.

In each block ¢’ channels out of ¢ channels are
skipped and are forwarded almost directly to the next
block. It can be viewed as feature reuse. It is clear that
the connections between the adjacent layers are stronger
than the others. This implies that the dense connection
between all layers could introduce redundancy.

Complete network architecture is similar to [14]
with respective changes to individual blocks. Apart from
that an additional 1x1 convolutional layer is added right
before the global average pooling to allow for feature mix
up. That makes the network to contain 51 layers in total.

DiCENet. Introduced in 2020 by Sachin Mehta et
al DiCENet [18] introduces concept of dimension-wise
convolutions. It describes the application of light-weight
convolutional filtering across each dimension of the input
tensor with further application of dimension-wise fusion
to combine dimension-wise representations.

DiCE unit applies standard depth-wise convolution
in all 3 dimensions (depth, width and height). A result of
this operation contains 3x more convolutional results
because of applying the kernel in 3 directions. This
operation is called dimension-wise convolution
(DimConv).

DimConv has three branches, one branch per
dimension. The outputs of these independent branches
are concatenated along the depth dimension, such that the
first spatial plane of YD, YW, and YH are put together
and so on, to produce the output.

The ability to encode local spatial and channel-wise
information from all dimensions using DimConv enables
the DiCE unit to use dimension-wise fusion (DimFuse)
instead of computationally expensive point-wise
convolutions. DimFuse consists of local fusion and
global fusion. YDim € R3DxHXW concatenates spatial
planes along depth dimension from YD, YW, and YH.
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YDim can be viewed as a tensor with D groups, each
group with three spatial planes. Thus, local fusion part of
DimFuse operation group  point-wise
convolutional layer to combine dimension-wise
information contained in YDim effectively encoding
special dimensions.

To encode the global information the global fusion
part learns special and channel-wise representations
independently and then uses element-wise multiplication
to propagate channel-wise encodings to special ones. To
encode special representation, it uses D dept-wise

uses a

convolutional kernels kS € R1xnxn, where n is the size
of a filter. To encode channel-wise representation
inspired by Squeeze-Excitation (SE) unit [29] the fusion
module squeezes special dimensions, uses 2 fully
connected layers with non-linearity in between. Like the
SE unit, spatial representations YG are then scaled using
these channel-wise representations to produce final
output Y.

Unlike in other popular networks [11, 12, 14, 15]
dimension-wise convolution allows for simultaneous
encoding in 3 dimensions. The computational cost of
DimFuse is HWD(3 + n2 + D). Effectively, DimFuse
reduces the computational cost of pointwise convolutions
by a factor of (3D )/(3+n"2+D) . DimFuse uses n = 3, so
the computational cost is approximately 3 times smaller
than that of the point-wise convolution.

For DiCENet the overall network architecture
doesn’t bring anything new, and the DiCE unit efficiency
is evaluated on MobileNetV2 and ShuffleNetV2
architectures.

DiCE module brings new point of view to
convolutional layers by applying depth-wise convolution
in all dimensions and in this way gathering spatial
information in both spatial and channel-wise direction.

On ImageNet classification task DiCENet has Top-
1 accuracy of 75.7%, 5.IM parameters with 297M
MAdds.

ESPNet. ESPNet [16] is based on efficient spatial
pyramid (ESP) modules, a factorized form of
convolutions that decompose a standard convolution into
a point-wise convolution and a spatial pyramid of dilated
convolutions [32].

ESP module consists of a point-wise convolution
that projects high-dimensional feature maps onto a low-
dimensional space (effectively reducing the number of
channels from M to N/K) and followed by special
pyramid of dilated convolutions, where M is the number
of input channels, N — number of output channels and K
is a divider, chosen deliberately. ESPNet uses K = 4. A
pyramid contains K dilated convolutional kernels of size
n x n, and for each kernel the dilation rate is different and
is 2k—1, k = {1, ..., K}. This factorization drastically
reduces the number of parameters, and the memory

required by the ESP module, while preserving a large
effective receptive field ((n—1)2K—1 +1)2. This
pyramidal convolutional operation is called a spatial
pyramid of dilated convolutions, because each dilated
convolutional kernel learns weights with different
receptive fields and so resembles a spatial pyramid. The
outputs of the K parallel dilated convolutional kernels are
concatenated to produce an N-dimensional output feature
map.

The ESP module has (NM + (Nn)2)/K parameters
and its effective receptive field is ((n—1)2K—1 +1)2 .
Compared to the n2NM parameters of the standard
convolution, factorizing it reduces the number of
parameters by a factor of ("2 MK)/(M+n"2 N) , while
increasing the effective receptive field by ~ (2K—1)2.

While dilated convolutions give the ESP module a
large receptive field the resulting output contains
gridding artifacts which are caused by the fact that dilated
convolutions have lots of 0 pixels. To overcome it the
ESP module first adds the feature maps obtained by
dilated kernels with different dilation rate and only then
concatenates them. The addition operation allows for 0
pixels to be substituted by information pixels from
feature maps with different dilation rates. This operation
is called Hierarchical Feature Fusion (HFF).

Improvement recommendations

Some key notes that should be taken are the channel
doubling when down sampling. It is important to ensure
the number of channels in each layer is devisable by 32
(most common architectures have their first layers with
exactly 32 channels and double this number during each
down sampling). The reason for it is that GPU kernels
run threads in groups of 32, which means that different
number of channels leads to inefficient use of GPU
threads during training. However, it is reasonable to
change the number of channels in order to reduce the
inference time for low-resource devices, providing it
doesn’t hurt the accuracy.

Depth-wise separable convolution is very effective,
giving for 3x3 filters an approximate speed up to 9 times
as compared to standard convolution. Depth-wise
separable convolutions is de-facto a standard when
building modern network architectures.

As was pointed out in [14] point-wise convolution
which is responsible for encoding global information
may take up to 90% of computational cost. When using
group convolutions in stacked layers of same dimension
it is more effective to substitute pointwise convolution by
concatenating the results of group convolutions and pass
the information further by shuffling channels. Channel
shuffle is much more efficient thanks to its simplicity and
doesn’t require parameters which have to be trained.
Memory access cost (MAC) affects real efficiency

226



Ynpaeninusa pozsumrxom cknaonux cucmem (60 — 2024)

ISSN 2219-5300

compared to theoretically calculated computation cost. It
makes sense to limit MAC in possible ways. Equal
channel width minimizes MAC and group convolutions
should be used with caution as they tend to increase
MAC.

Another point of view to channel-wise encoding is
proposed by [18] in applying depth-wise filtering across
all dimensions. This approach allows to perform local
information encoding channel-wise using light-weight
convolution. However, to get global information it is still
required to perform some sort of operations to convolve
across resulting channels and it is done by dimension-
wise fusion which leverages group convolutions
followed by global pooling and some fully connected
layers. We see potential in further improving DiCE unit
by changing the way to globally encode channel-wise
information.

The feature re-sampling methods re-sample the
convolutional feature maps of different scales to a fixed
scale output using different pooling rates [30, 31] and
kernel sizes for efficient classification. Feature re-
sampling is computationally expensive and is performed
just before the classification layer to learn scale-invariant
representations. This is very important as re-sampling
allows for a network to process images of different sizes
without need for explicit retraining of other operations to
feed an image into a network.

Because point-wise convolution aims to encode
cross-channel information we think it is possible to
substitute point-wise convolution with proper channel
shuffling among several layers with carefully selected

numbers of groups in each layer and the result of the last
layer can be aggregated by simple mathematical
operation (similar to channel shuffle but rather
aggregating information) such as max pooling operation.
Such an approach may significantly reduce the number
of point-wise providing the entire
architecture of a network is somewhat limited by the size
of groups in group convolutions and the number of
sequentially applied group convolution layers. The idea
is that instead of point-wise convolution in each layer the
network can share information cross-channel using only
channel shuffle operations and the effect must be better
when applying several stacked group convolutional
layers with shuffled channels in between. And the
average pooling or other proposed operation at the end of
such block performs the operation of convolving
resulting tensor into a single feature map. The key
question here is forming the operation to uniquely, yet in
a predictable way create multiple feature maps.

convolutions

Conclusions

We analyzed many CNNs with their unique features
that significantly reduce model size and computational
cost at a cost of small to no accuracy loss. Yet, it is clear
that even the most efficient models can be hard to run in
real time on low-power resources such as edge devices.

We propose further investigations in adjusting filter
sizes for better performance and in searching for an
operation that can replace 1x1 point-wise convolutions
efficiently.
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CYYACHI MAJII MEPEXI JJIS1 KJIACU®IKAIII 306PAKEHD. AHAJII3 OCOBJIMBOCTEM

Anomauia. 3i spocmannam nonumy Ha UKOPUCMAHHA MoOenell 21ubOK020 HABYAHHA HA NPUCMPOAX 3 00MedceHUMU
pecypcamu, maxux ax cmapmeponu, oamuuku loT i nepughepitini o6uucnosanvui niameopmu, nompeba 6 eghpekmusHuUXx 320pMKOBUX
netiponnux mepedxcax (3HM) cmana nepwiopsaouoro. Y cmammi 3anponono8ano euuepnHuil 02140 KilbKOX HAUCYYACHIWUX
noneauenux apximexmyp 3HM, po3pobnenux ona eupiwienns yux npobiem wisaxom smMeHueHHs 00YUCTIOBANbHOI CK1aoHOCmi ma
BUKOPUCTAKHA nam 'ami, 30epieaiouu KOHKYPEHmMOCHPOMOJCHICMb V 3a0ayax Kiacugixayii 300pagicens. Ilepeznsnymi ko406l
apximexmypu exnioyaiome MobileNets, ShuffleNet, DiceNet i ESPNet, xoocna 3 AKux eukopucmosye pisui cmpameeii Ons
onmumizayii egpexmusnocmi mepeoici. MobileNets npedcmasense Konyenyilo 320pmox, wo po30iIsLIOMbCsi NO 2NUOUHI, KD
PO3KIA0aIomb CMAHOAPMHY Onepayiio 320pmKU HA 320pMKY no 2iubuni ma 3eopmky no mouxax (Ix1). Lle cymmeso smenutye
KibKicmb napamempie i o04UCIeHb NOPIGHIHO 3 Mpaduyitunumu 3eopmkamu. 3 inuwozo 60ky, ShuffleNet euxopucmosye epynogi
320pmKU I nepemacy8anHs Kamanie O0nsa NiOGUWEHHs eheKmuUHOCHI, YMONCIUBTIOIYY PO3OILIAMU MA PeKoMOinysamu Kapmu
O3HAK, WO 3MEHWYE GUMpamu Ha ob6yucnenns 6es cymmesoi wkoou 0as mounocmi. DiceNet cnupacmocs na yi kKonyenyii,
3anposacicyiouu  6a2amopo32anydiceny apximekmypy 3 pI3HUMU MeMNamu po3uiuperts Oid 6UOLIeHHA O3HAK ) PIi3HUX
Macwmabax, nioguwyouu K mounicms, max i egpekmusnicms y cepedosuwax iz Husvkum pecypcom. ESPNet euxopucmosye
ehexmueHi npOCMOposi NiPAMIOAIbHI CIMPYKMYPU PA30M I3 ROMOYKOSUMU 320PMKAMU OJis 00POOKU PIZHOMAHIMHUX NPOCIMOPOBUX
ocobaugocmell y pisHuUX Macumaodax, 0OHOUACHO 3 BUCOKOIO 0OYUCTIO8ANbHOIO epekmugnicmio. Hessadcaiouu na yi docsaenenns,
3A2ANbHUM BY3bKUM MICYEM Y YuX apXimekmypax € nokiaoanus na nomouxoei (1x1) szeopmiu, ski, xou i epexmueniuii, Hidc
CMAaHOapmui 320pmKu, 6ce e poONAMsd 3HAYHUL BHECOK Y 3A2albHY 8apMicmb 06UUCIeHb, 0COOIUB0 HA OiNbUL 2TUOOKUX PIGHAX
mepedici. Kpim mozo, posmipu ghinempie uacmo onmumizogani 051 RPOOYKMUSHOCMI 8 XMAPHUX Cepe00BUWAX, dle MOJICYNb Oymu
He [OeanvHumu Ol nepughepitinux cepedosuly, 0e 0OHUCTIOBANbHA WEUOKICMb 1l eHepeoehekmusHicms € gupiuanvioio. Mu
bayumo nomenyian y 3mini posmipie @inempis y deaxux wiapax 00 2x2, wo € HauMeHWUM MOICTUBUM PITbMPOM O GULYUEHHS
npocmoposoi ingopmayii. Taxoxc crio 36eprymu ysazy Ha me, sIK iHPOPMAyis NOWUPIOEMbCA MIHC KAHATAMU, a MAKOX4C HA me,
AK KIbKICMb KAHANIE POPMYEMbCA WAAXOM 3aminu 32opmiu 1x1 inworo nepedbauyeanoio MamemMamuyHo onepayicio.

Knrwouogi cnosa: 320pmkoei HellponHi mepesci; Knacugikauisa 300pasxcenv; Komn’omepruii 3ip
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