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MODERN SMALL NETWORKS FOR IMAGE CLASSIFICATION.  
FEATURE ANALYSIS 

 
Abstract. With the increasing demand for deploying deep learning models on resource-constrained devices, 
such as smartphones, IoT sensors, and edge computing platforms, the need for efficient convolutional 
neural networks (CNNs) has become paramount. This paper offers a comprehensive review of several state-
of-the-art lightweight CNN architectures designed to address these challenges by reducing computational 
complexity and memory usage, while maintaining competitive performance in image classification tasks. 
Key architectures reviewed include MobileNets, ShuffleNet, DiceNet, and ESPNet, each of which employs 
distinct strategies to optimize network efficiency. MobileNets introduce the concept of depthwise separable 
convolutions, which decompose the standard convolution operation into a depthwise convolution and a 
point-wise convolution (1x1). This drastically reduces the number of parameters and computations 
compared to traditional convolutions. ShuffleNet, on the other hand, leverages group convolutions and 
channel shuffling to enhance efficiency, allowing feature maps to be split and recombined, which reduces 
computational cost without significantly compromising accuracy. DiceNet builds upon these concepts by 
introducing multi-branch architecture with different dilation rates to capture features at multiple scales, 
enhancing both accuracy and efficiency in low-resource environments. ESPNet employs efficient spatial 
pyramidal structures, along with point-wise convolutions, to handle diverse spatial features at different 
scales while being highly computationally efficient. Despite these advancements, a common bottleneck 
across these architectures is the reliance on point-wise (1x1) convolutions, which, while more efficient than 
standard convolutions, still contribute significantly to the overall computational cost, particularly in deeper 
layers of the network. Furthermore, filter sizes are often optimized for performance in a cloud-based setting 
but may not be ideal for edge environments where computational and energy efficiency are crucial. We see 
the potential in changing filter sizes in some layers to 2x2 which is the smallest possible filter for spatial 
information extraction. Also it worth paying attention to the way the information is spread across channels 
as well as how the channels number is formed by replacing 1x1 convolution with a generic but yet 
predictable mathematical operation. 
 
Keywords: convolutional neural networks; image classification; computer vision; IoT 

 

Introduction 

In recent years, neural networks, particularly 
convolutional neural networks (CNNs), have 
revolutionized image recognition by enabling systems to 
process and classify images with remarkable accuracy. 
The deployment of such systems on mobile and edge 
devices has become increasingly significant, driven by 
the growth of mobile applications, autonomous systems, 
and the Internet of Things (IoT). This shift allows for 
real-time processing and decision-making at the edge of 
the network, reducing the need for cloud-based computa-
tion and mitigating latency and privacy concerns. 

Neural networks, specifically deep learning models 
like CNNs, are designed to automatically learn features 
from input images, enabling them to identify patterns 
such as shapes, textures, and objects. CNNs, in particular, 
have gained popularity in image recognition due to their 
ability to handle spatial data efficiently. 

Deep learning automates the learning process, 
producing models capable of superior generalization 
across different tasks. These models have become 
integral in various applications, including facial 
recognition, augmented reality, autonomous vehicles [8], 
video surveillance [6; 7] and medical diagnostics. 

Standard CNNs often have high latency due to large 
model sizes and extensive computations. Optimizing 
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models for inference speed, memory efficiency, and 
reduced Floating Point Operations Per Second (FLOPs) 
ensures they can process data fast enough for these real-
time applications. 

Large neural networks not only consume more 
resources but also introduce higher latency in image 
recognition tasks. For real-time applications any delay in 
processing could be detrimental. Therefore, it is crucial 
to design models that reduce latency without sacrificing 
accuracy. 

Many real-world applications of deep learning, such 
as mobile apps, embedded systems, and IoT devices, 
involve hardware with limited computational resources, 
memory, and power. Standard deep learning models like 
VGG [2] or ResNet [4] are computationally heavy and 
unsuitable for such environments without significant 
optimization. Also, despite optimizations, neural 
networks still demand considerable computational 
resources and running them on mobile devices can drain 
battery life quickly. Edge devices in remote or mobile 
applications are particularly sensitive to power 
constraints. This has led to ongoing research into 
lightweight architectures such as MobileNets [11 – 13], 
ShuffleNet [14] and the recently proposed DiCENet [18]. 
These networks make it feasible to run high-performing 
models on low-power devices without sacrificing much 
accuracy.  

While progress has been made in deploying neural 
networks for image recognition on mobile and edge 
devices, several limitations remain: 

Hardware Limitations: Although mobile 
processors and edge computing hardware are becoming 
more powerful, they still lag behind server-grade GPUs 
and TPUs in terms of computational capability. Future 
developments in specialized hardware, such as 
neuromorphic chips or low-power AI accelerators, are 
expected to further enhance on-device neural network 
performance. 

Model Optimization Trade-offs: Reducing the 
size and complexity of models often results in a trade-off 
between performance and accuracy. While techniques 
like model pruning and quantization help in reducing 
model size, they may also lead to a loss in recognition 
accuracy, especially in complex environments. 

There are also other limitations such as continuous 
learning on edge devices without frequent updates from 
the cloud or interoperability and standards that create 
challenges in deploying neural networks across different 
devices and platforms. 

The purpose of the article 

The purpose of this article is to provide comparative 
analysis of existing efficient CNNs and their features, 
development of further improvement recommendations 
and setting the task of network accuracy improvement 
with respect to its computational cost. 

Efficient convolutional neural networks 

The main building block of a CNN is a convolution 
layer which is responsible for spatial feature extraction. 
A lot of research has been done around the convolution 
layer itself [1] as well as the entire blocks which can 
incorporate one or more convolutional layers [2 – 4]. 
Other investigations are related to alternative activation 
functions, regularization or parameter optimization [5]. 

We discuss the following CNNs: MobileNet [11], 
MobileNet V2 [12] and MobileNet V3 [13], ShuffleNet 
[14], ShuffleNet V2 [15], ESPNetv1 [16] and DiCENet 
[18] and SqueezeNe t[19] and of course we will refer to 
AlexNet [1] as a baseline for accuracy. 

AlexNet. The network that started it all. Since the 
innovation of LeNet network in 1980s [20] convolutional 
neural networks haven’t been evolving until AlexNet 
emerged in 2012 taking the 1st place in ImageNet 
competition. This model gives the top-5 accuracy of 
83.0% and top-1 accuracy of 62.5% as per their reports. 

This network consists of 8 layers with 5 first layers 
being convolutional and 3 last layers being fully 
connected. Due to computational resources limitation of 
that time the original network had specific architecture 
which divides some convolutional and some fully 
connected layers into two separate ones to train them on 
2 different GPUs. Thanks to modern processing libraries 
it is possible to combine back each separated layer and 
present it as a single solid one. 

Some other important features that AlexNet 
proposes are the use of ReLU [21] activation function as 
a nonlinearity function as well as local response 
normalization and overlapping pooling.  

It worth mentioning that such a big network tends 
to overfit even using such big datasets as ImageNet so the 
authors also used the dropout [22] of 0.5 during training 
which positively affected training results. A neuron is 
removed from the neural network during dropout with 
specified probability. A neuron that is dropped does not 
make any contribution to either forward or backward 
propagation. So every input is processed by a separate 
neural network architecture but all architectures share the 
same weights. The acquired weight parameters are 
therefore more reliable and less prone to overfitting. 

The model has 61.1M parameters which was (and 
still is) considered to be quite a substantial number. 

SqueezeNet. The model was proposed in 2016 by 
Forrest N. Iandola et al with the primary goal of reducing 
the network size while preserving accuracy. The authors 
chose the AlexNet as a baseline for inference accuracy. 
The authors list the following advantages of smaller 
networks: 

1. Less communication between servers during 
distributed training; 

2. Less bandwidth is required for uploading new 
model onto the devices over-the-air; 
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3. Smaller CNNs are more feasible to deploy on 
limited-resources devices such as IoT devices, mobile 
phones or other embedded devices. 

The model’s main aim is to reduce the size on a disk 
consumed by the network. Most popular networks make 
heavy use of 3x3 convolutional layers which are proved 
to be the most effective in deep neural networks. Though 
it is admitted that 1x1 convolutional layers have 9 times 
fewer learnable parameters, however they provide 
drastically less spatial information. Another conceptual 
idea is to reduce the number of input channels to the 
remaining 3x3 filters. A squeeze layer is proposed to 
decrease the number of input channels for 3x3 
convolutional filers. 

A module called Fire module is proposed. The 
module represents design decision at a microarchitecture 
level which defines how a basic network building block 
should look like. The term of microarchitecture was also 
introduced by Forrest N. Iandola et al in this document 
and defines microarchitecture as architecture of high-
level building block or a module comprised of multiple 
convolutional layers with a specific fixed organization. 

The fire module consists of a small 1x1 squeeze 
layer which reduces the number of input channels to the 
next expansion layer, which in turn consists of 1x1 and 
3x3 filters. The expansion layer is called so because it 
expands back the number of channels after the squeeze 
layer. The amount of 1x1 filters in squeeze later as well 
as 1x1 and 3x3 filters in expansion layer is controlled by 
hyper parameters that effectively allows to modify the 
network architecture on module level. 

The network consists of 1st convolutional layer, 
followed by 8 fire modules, 3 maxpool and 1 averagepool 
layers and ending with the final 1x1 convolutional layer 
fed into softmax unit for classification which results in 
22 layers in total (since fire module consists of 2 layers). 
The use of 1x1 convolutional layer instead of fully 
connected one was inspired by the NiN[23] and is also 
known to reduce the number of parameters.  

Important to note that authors of SqueezeNet 
proposed a more disciplined approach to searching the 
novel CNN architectures. The authors provided 
comparison for model efficiency based on squeeze ratio 
and 3x3 filters in expand layer ratio. The results showed 
that the best accuracy can be achieved with the squeeze 
ratio equals to 1 (which effectively means no squeeze) 
and 3x3 filters taking 100 of expand layer, however 
consuming more memory. Accuracy doesn’t correlate 
linearly to squeeze/expand ratio changes which gives 
authors the way to propose the best accuracy/model size 
ratio. 

MobileNet. MobileNet V1 was originally 
developed by Andrew G. Howard et al in 2017. [11] It 
leverages the performance of depthwise separable 
convolution inspired by Xception network [24] as many 
other modern small networks do. 

The standard convolution operation has the effect of 
filtering features based on the convolutional kernels and 
combining features to produce a new representation. The 
filtering and combination steps can be split into two steps 
via the use of factorized convolutions called depthwise 
separable convolutions for substantial reduction in 
computational cost. 

As stated above depthwise separable convolution 
consists of depthwise convolution and pointwise 
convolution. First a depthwise convolution is used by 
applying individual spatial filters to feature map channels 
and then pointwise convolution in a form of 1x1 
convolution is applied to create a linear combination of 
depthwise convolution outputs as shown on Figure 3. 

As mentioned in the paper standard convolutions 
have the computational cost of: 

 
DK · DK · M · N · DF · DF (1) 

 
And depthwise separable convolutions costs:  
DK · DK · M · DF · DF + M · N · DF · DF (2) 
 
Using depthwise separable convolution we get a 

reduction in computation of: 
 

1/N+1/(D_k^2 ) (3) 
 
Because MobileNet uses 3x3 filters each its 

depthwise separable convolutional layer gives 
approximately 9 times reduction in computation. 

For a feature map of size 112x112x32 applying 
standard convolutional filter of size 3x3(x32) 32 times 
results in 3x3x32x32x112x112 = 115,605,504 
computations. 

The same can be achieved with depthwise separable 
convolution using only 3x3x32x112x112 +  
+ 32x32x112x112 = 3,612,672 + 12,845,056 =  
= 16,457,728 computations which is 7.02 times better 
than full convolutional layer. 

 

 
 

Picture – Depthwise separable convolutional layer [24] 
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MobileNet consists of 28 layers with only the 1st 
layer being fully convolutional and other layers being 
depthwise separable convolutional layers and the last 
fully connected layer preceding the softmax unit. 

A model provides the following hyperparameters 
for tuning the network: width multiplier hyperparameter 
and resolution multiplier hyperparameter. The values of 
them are intended to change the accuracy and size of the 
model as per user needs. The width multiplier α 
essentially represents the number of channels on each 
layer compared to the original structure. Typical values 
for it are (0.25, 0.5, 0.75, 1). α = 1 is the baseline 
MobileNet and α < 1 are reduced MobileNets. Width 
multiplier has the effect of reducing computational cost 
and the number of parameters quadratically by roughly 
α2. 

The second hyper-parameter to reduce the 
computational cost of a neural network is a resolution 
multiplier ρ. The parameter is applied to the very first 
layer in the network, essentially to the input image. This 
parameter reduces the size of the input image and internal 
representation of every subsequent layer is reduced by 
the same multiplier. Resolution multiplier also has the 
effect of reducing computational cost by ρ2. 

Results of the paper show that at similar 
computation and number of parameters, making 
MobileNets thinner is 3% better than making them 
shallower. 

On ImageNet classification task MobileNet 1.0 has 
Top-1 accuracy of 70.6%, 4.2M parameters with 569M 
MAdds. 

MobileNetV2. Introduced in 2019 MobileNetV2 
[12] is the next iteration of MobileNet [11]. The basic 
model structure remains the same and also makes use of 
depthwise separable convolution, however, introduces 
inverted residual blocks. Inverted residual blocks create 
connections between thin layers as opposed to classical 
residual blocks that connect expansion layers. 

The inverted residual blocks appear similar to 
residual block where each block contains an input 
followed by several bottlenecks then followed by 
expansion [25]. However, inspired by the intuition that 
the bottlenecks actually contain all the necessary 
information, while an expansion layer acts more like an 
implementation detail that accompanies a non-linear 
transformation of the tensor, the authors suggest using 
shortcuts directly between the bottlenecks. The shortcuts 
allow the network to learn better using the same principle 
as ResNet does, but the shortcuts connect narrow layers 
instead of wide ones which also saves computation.  

A network block structure is defined by a 1x1 
expansion convolution followed by depthwise 
convolutions and a 1x1 projection layer. The input and 
output are connected with a residual connection if and 
only if they have the same number of channels. 

The architecture of MobileNetV2 contains the 
initial fully convolution layer with 32 filters, followed by 
19 residual bottlenecks layers. Model uses ReLU6 as the 
non-linearity because of its robustness when used with 
low-precision computation [11]. The kernel size is 
always 3 × 3 as is standard for modern networks. 

On ImageNet classification task MobileNetV2 1.0 
has Top-1 accuracy of 72.0%, 3.4M parameters with 
300M MAdds. 

MobileNetV3. Presented in 2019 by authors from 
Google MobileNetV3 [13] became the latest iteration of 
MobileNets family. 

Authors used Platform-Aware NAS for Block-wise 
Search approach which then followed by NetAdapt for 
Layer-wise Search. In this way authors automated the 
search for a better network structure. 

MobileNetV3 uses lightweight attention modules 
[28] based on squeeze and excitation in the bottleneck 
structure. The module is placed after the depthwise filters 
in the expansion in order for attention to be applied on 
the largest representation. Layers are also upgraded with 
modified swish nonlinearities [26, 27]. Both squeeze and 
excitation as well as the swish nonlinearity use the 
sigmoid which can be inefficient to compute as well 
challenging to maintain accuracy in fixed point 
arithmetic, so the sigmoid is replaced with the hard 
sigmoid nonlinearity.  

Also, the model contains redesigned 
computationally expensive layers. During development it 
was found out that the last convolutional layer and the 
first convolutional layer are more expensive than others. 
The last 1x1 convolutional layer is pretty 
computationally heavy but also is critical for prediction 
so it is impossible to remove it, however authors 
managed to move the layer past the average pooling 
layer. In this way the expensive 7x7 convolutional layer 
could be replaced with 1x1 spatial layer. For the first 
convolutional layer authors proposed to use h-swish 
implemented as piece-wise function nonlinearity instead 
of ReLU6 (h-swish is a little bit faster) and also to reduce 
the number of filters from 32 to 16, they proved that this 
reduction resulted in almost no loss in accuracy. 

As a conclusion this network’s main advantage 
compared to MobileNetV2 is use of h-swish nonlinearity 
combined with quantization. MobileNetV3 provides -
Large and -Small models to cover variety of 
performance/accuracy requests. 

On ImageNet classification task MobileNetV3-
Large 1.0 has Top-1 accuracy of 75.2%, 5.4M parameters 
with 219M MAdds. MobileNetV3-Small has Top-1 
accuracy of 67.4%, 2.5M parameters with 56M MAdds. 

ShuffleNet. This architecture was introduced in 
2017 by Xiangyu Zhang et al from Megvii Inc. [14] The 
autors note that popular large architectures such as 
Xception or ResNeXt become less efficient for small 
networks because of costly 1x1 convolutions. The 
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architecture uses pointwise group convolutions to reduce 
the complexity of 1x1 pointwise convolutions and to 
efficiently share information between channel groups it 
uses channel shuffle operation.  

ShuffleNet employs group convolutions with the 
number of groups varying from 3 to 8. It is noted that 
sequentially using multiple group convolutions leads to 
significant information loss because every group 
convolution gets information from only a group of 
channels from previous layer rather than the whole layer. 
Straight sequential using of group convolutions without 
information sharing such as pointwise convolution leads 
to a group getting information from only a small part of 
previous layer. Authors propose to replace expensive 1x1 
pointwise convolution for information sharing with 
cheap channel shuffle operation. 

Channel shuffle operation takes GConv layer output 
with g groups each of which has n channels resulting in 
g x n channels and reshapes their dimension into (g, n). 
This matrix is then transposed and flattened back and this 
result is provided as an input to the next channel.  

In addition, in ShuffleNet depthwise convolution 
only performs on bottleneck feature maps. Even though 
depthwise convolution usually has very low theoretical 
complexity, it may be difficult to efficiently implement 
on lowpower mobile devices, which may result from a 
worse computation/memory access ratio compared with 
other dense operations. 

ShuffleNet architecture contains 50 layers while 
MobileNet only has 28 layers. Making the model 
shallower by removing half of blocks thus reducing the 
number of layers to 26 slightly decreases accuracy but the 
best performance can be achieved by using 50 layers. 

On ImageNet classification task ShuffleNet 1.0 has 
Top-1 accuracy of 67.6%, at 140M FLOPs. 

We are sure it is important to note that group 
convolutions with channel shuffling have their drawback 
in that the number of groups is limited to relatively small 
number which makes groups quite big in deeper layers 
when the number of channels increases and as a result 
group convolution becomes heavy operation. 

ShuffleNet V2. ShuffleNet V2 is an evaluation of 
ShuffleNet V1 [14] and was proposed in 2018 by 
Ningning Ma at al. [15] 

The paper mainly assesses theoretical metrics 
accuracy of GFLOPs compared to real performance on 
different devices. One of things to consider is memory 
access cost (MAC) can significantly influence real 
performance due to limited high speed cache on device. 
In general the following guidelines are discussed and 
proposed by the research: 

• (G1) Equal channel width minimizes memory 
access cost (MAC). 

• (G2) Excessive group convolution increases 
MAC. 

• (G3) Network fragmentation reduces degree of 
parallelism. 

• (G4) Element-wise operations are non-negligible. 
ShuffleNet V2 design uses ShuffleNet as the base 

and introduces changes to comply with the stated above 
guidelines. 

ShuffleNet V2 unit is based on unit from [14] but 
contains the following differences. An introduced 
channel split operation splits incoming channels c into 
two branches with c – c` and c` channels, respectively. 
One branch remains untouched while the other branch 
applies sequentially 1x1 convolution, 3x3 depth-wise 
convolution and 1x1 convolution with each convolution 
having the same  number of input and output channels to 
satisfy G1. The network uses c` = c/2 in its original 
version. 

After convolution, the two branches are 
concatenated so the number of channels stays the same 
(G1). The same “channel shuffle” operation as in [14] is 
then used to enable information exchange between the 
two branches. 

In each block c` channels out of c channels are 
skipped and are forwarded almost directly to the next 
block. It can be viewed as feature reuse. It is clear that 
the connections between the adjacent layers are stronger 
than the others. This implies that the dense connection 
between all layers could introduce redundancy. 

Complete network architecture is similar to [14] 
with respective changes to individual blocks. Apart from 
that an additional 1x1 convolutional layer is added right 
before the global average pooling to allow for feature mix 
up. That makes the network to contain 51 layers in total. 

DiCENet. Introduced in 2020 by Sachin Mehta et 
al DiCENet [18] introduces concept of dimension-wise 
convolutions. It describes the application of light-weight 
convolutional filtering across each dimension of the input 
tensor with further application of dimension-wise fusion 
to combine dimension-wise representations. 

DiCE unit applies standard depth-wise convolution 
in all 3 dimensions (depth, width and height). A result of 
this operation contains 3x more convolutional results 
because of applying the kernel in 3 directions. This 
operation is called dimension-wise convolution 
(DimConv). 

DimConv has three branches, one branch per 
dimension. The outputs of these independent branches 
are concatenated along the depth dimension, such that the 
first spatial plane of YD, YW, and YH are put together 
and so on, to produce the output. 

The ability to encode local spatial and channel-wise 
information from all dimensions using DimConv enables 
the DiCE unit to use dimension-wise fusion (DimFuse) 
instead of computationally expensive point-wise 
convolutions. DimFuse consists of local fusion and 
global fusion. YDim ∈ R3D×H×W concatenates spatial 
planes along depth dimension from YD, YW, and YH. 



Технології управління розвитком 

226 

YDim can be viewed as a tensor with D groups, each 
group with three spatial planes. Thus, local fusion part of 
DimFuse operation uses a group point-wise 
convolutional layer to combine dimension-wise 
information contained in YDim effectively encoding 
special dimensions.  

To encode the global information the global fusion 
part learns special and channel-wise representations 
independently and then uses element-wise multiplication 
to propagate channel-wise encodings to special ones. To 
encode special representation, it uses D dept-wise 
convolutional kernels kS ∈ R1×n×n, where n is the size 
of a filter. To encode channel-wise representation 
inspired by Squeeze-Excitation (SE) unit [29] the fusion 
module squeezes special dimensions, uses 2 fully 
connected layers with non-linearity in between. Like the 
SE unit, spatial representations YG are then scaled using 
these channel-wise representations to produce final 
output Y. 

Unlike in other popular networks [11, 12, 14, 15] 
dimension-wise convolution allows for simultaneous 
encoding in 3 dimensions.  The computational cost of 
DimFuse is HWD(3 + n2 + D). Effectively, DimFuse 
reduces the computational cost of pointwise convolutions 
by a factor of (3D )/(3+n^2+D)  . DimFuse uses n = 3, so 
the computational cost is approximately 3 times smaller 
than that of the point-wise convolution. 

For DiCENet the overall network architecture 
doesn’t bring anything new, and the DiCE unit efficiency 
is evaluated on MobileNetV2 and ShuffleNetV2 
architectures. 

DiCE module brings new point of view to 
convolutional layers by applying depth-wise convolution 
in all dimensions and in this way gathering spatial 
information in both spatial and channel-wise direction. 

On ImageNet classification task DiCENet has Top-
1 accuracy of 75.7%, 5.1M parameters with 297M 
MAdds. 

ESPNet. ESPNet [16] is based on efficient spatial 
pyramid (ESP) modules, a factorized form of 
convolutions that decompose a standard convolution into 
a point-wise convolution and a spatial pyramid of dilated 
convolutions [32].  

ESP module consists of a point-wise convolution 
that projects high-dimensional feature maps onto a low-
dimensional space (effectively reducing the number of 
channels from M to N/K) and followed by special 
pyramid of dilated convolutions, where M is the number 
of input channels, N – number of output channels and K 
is a divider, chosen deliberately. ESPNet uses K = 4. A 
pyramid contains K dilated convolutional kernels of size 
n × n, and for each kernel the dilation rate is different and 
is 2k−1, k = {1, ..., K}. This factorization drastically 
reduces the number of parameters, and the memory 

required by the ESP module, while preserving a large 
effective receptive field ((n−1)2K−1 +1)2. This 
pyramidal convolutional operation is called a spatial 
pyramid of dilated convolutions, because each dilated 
convolutional kernel learns weights with different 
receptive fields and so resembles a spatial pyramid. The 
outputs of the K parallel dilated convolutional kernels are 
concatenated to produce an N-dimensional output feature 
map. 

The ESP module has (NM + (Nn)2)/K parameters 
and its effective receptive field is ((n−1)2K−1 +1)2 . 
Compared to the n2NM parameters of the standard 
convolution, factorizing it reduces the number of 
parameters by a factor of (n^2 MK)/(M+n^2 N) , while 
increasing the effective receptive field by ∼ (2K−1)2. 

While dilated convolutions give the ESP module a 
large receptive field the resulting output contains 
gridding artifacts which are caused by the fact that dilated 
convolutions have lots of 0 pixels. To overcome it the 
ESP module first adds the feature maps obtained by 
dilated kernels with different dilation rate and only then 
concatenates them. The addition operation allows for 0 
pixels to be substituted by information pixels from 
feature maps with different dilation rates. This operation 
is called Hierarchical Feature Fusion (HFF). 

Improvement recommendations 

Some key notes that should be taken are the channel 
doubling when down sampling. It is important to ensure 
the number of channels in each layer is devisable by 32 
(most common architectures have their first layers with 
exactly 32 channels and double this number during each 
down sampling). The reason for it is that GPU kernels 
run threads in groups of 32, which means that different 
number of channels leads to inefficient use of GPU 
threads during training. However, it is reasonable to 
change the number of channels in order to reduce the 
inference time for low-resource devices, providing it 
doesn’t hurt the accuracy. 

Depth-wise separable convolution is very effective, 
giving for 3x3 filters an approximate speed up to 9 times 
as compared to standard convolution. Depth-wise 
separable convolutions is de-facto a standard when 
building modern network architectures. 

As was pointed out in [14] point-wise convolution 
which is responsible for encoding global information 
may take up to 90% of computational cost. When using 
group convolutions in stacked layers of same dimension 
it is more effective to substitute pointwise convolution by 
concatenating the results of group convolutions and pass 
the information further by shuffling channels. Channel 
shuffle is much more efficient thanks to its simplicity and 
doesn’t require parameters which have to be trained. 
Memory access cost (MAC) affects real efficiency 
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compared to theoretically calculated computation cost. It 
makes sense to limit MAC in possible ways. Equal 
channel width minimizes MAC and group convolutions 
should be used with caution as they tend to increase 
MAC. 

Another point of view to channel-wise encoding is 
proposed by [18] in applying depth-wise filtering across 
all dimensions. This approach allows to perform local 
information encoding channel-wise using light-weight 
convolution. However, to get global information it is still 
required to perform some sort of operations to convolve 
across resulting channels and it is done by dimension-
wise fusion which leverages group convolutions 
followed by global pooling and some fully connected 
layers. We see potential in further improving DiCE unit 
by changing the way to globally encode channel-wise 
information. 

The feature re-sampling methods re-sample the 
convolutional feature maps of different scales to a fixed 
scale output using different pooling rates [30, 31] and 
kernel sizes for efficient classification. Feature re-
sampling is computationally expensive and is performed 
just before the classification layer to learn scale-invariant 
representations. This is very important as re-sampling 
allows for a network to process images of different sizes 
without need for explicit retraining of other operations to 
feed an image into a network. 

Because point-wise convolution aims to encode 
cross-channel information we think it is possible to 
substitute point-wise convolution with proper channel 
shuffling among several layers with carefully selected 

numbers of groups in each layer and the result of the last 
layer can be aggregated by simple mathematical 
operation (similar to channel shuffle but rather 
aggregating information) such as max pooling operation. 
Such an approach may significantly reduce the number 
of point-wise convolutions providing the entire 
architecture of a network is somewhat limited by the size 
of groups in group convolutions and the number of 
sequentially applied group convolution layers. The idea 
is that instead of point-wise convolution in each layer the 
network can share information cross-channel using only 
channel shuffle operations and the effect must be better 
when applying several stacked group convolutional 
layers with shuffled channels in between. And the 
average pooling or other proposed operation at the end of 
such block performs the operation of convolving 
resulting tensor into a single feature map. The key 
question here is forming the operation to uniquely, yet in 
a predictable way create multiple feature maps. 

Conclusions 

We analyzed many CNNs with their unique features 
that significantly reduce model size and computational 
cost at a cost of small to no accuracy loss. Yet, it is clear 
that even the most efficient models can be hard to run in 
real time on low-power resources such as edge devices. 

We propose further investigations in adjusting filter 
sizes for better performance and in searching for an 
operation that can replace 1x1 point-wise convolutions 
efficiently. 
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СУЧАСНІ МАЛІ МЕРЕЖІ ДЛЯ КЛАСИФІКАЦІЇ ЗОБРАЖЕНЬ. АНАЛІЗ ОСОБЛИВОСТЕЙ 

 
Анотація. Зі зростанням попиту на використання моделей глибокого навчання на пристроях з обмеженими 

ресурсами, таких як смартфони, датчики IoT і периферійні обчислювальні платформи, потреба в ефективних згорткових 
нейронних мережах (ЗНМ) стала першорядною. У статті запропоновано вичерпний огляд кількох найсучасніших 
полегшених архітектур ЗНМ, розроблених для вирішення цих проблем шляхом зменшення обчислювальної складності та 
використання пам’яті, зберігаючи конкурентоспроможність у задачах класифікації зображень. Переглянуті ключові 
архітектури включають MobileNets, ShuffleNet, DiceNet і ESPNet, кожна з яких використовує різні стратегії для 
оптимізації ефективності мережі. MobileNets представляє концепцію згорток, що розділяються по глибині, які 
розкладають стандартну операцію згортки на згортку по глибині та згортку по точках (1x1). Це суттєво зменшує 
кількість параметрів і обчислень порівняно з традиційними згортками. З іншого боку, ShuffleNet використовує групові 
згортки і перетасування каналів для підвищення ефективності, уможливлюючи розділяти та рекомбінувати карти 
ознак, що зменшує витрати на обчислення без суттєвої шкоди для точності. DiceNet спирається на ці концепції, 
запроваджуючи багаторозгалужену архітектуру з різними темпами розширення для виділення ознак у різних 
масштабах, підвищуючи як точність, так і ефективність у середовищах із низьким ресурсом. ESPNet використовує 
ефективні просторові пірамідальні структури разом із поточковими згортками для обробки різноманітних просторових 
особливостей у різних масштабах, одночасно з високою обчислювальною ефективністю. Незважаючи на ці досягнення, 
загальним вузьким місцем у цих архітектурах є покладання на поточкові (1x1) згортки, які, хоч і ефективніші, ніж 
стандартні згортки, все ж роблять значний внесок у загальну вартість обчислень, особливо на більш глибоких рівнях 
мережі. Крім того, розміри фільтрів часто оптимізовані для продуктивності в хмарних середовищах, але можуть бути 
не ідеальними для периферійних середовищ, де обчислювальна швидкість й енергоефективність є вирішальною. Ми 
бачимо потенціал у зміні розмірів фільтрів у деяких шарах до 2x2, що є найменшим можливим фільтром для вилучення 
просторової інформації. Також слід звернути увагу на те, як інформація поширюється між каналами, а також на те, 
як кількість каналів формується шляхом заміни згортки 1x1 іншою передбачуваною математичною операцією. 
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