УДК 658(075.8)

¹Ю.И. Бурименко, ²Н.Ю. Вороная, ¹М.В. Копытина

 1 Одесская национальная академия им. А.С. Попова, Одесса

ФИНАНСОВЫЙ ПРОФИЛЬ ИНВЕСТИЦИОННОЙ ПРОГРАММЫ РАЗВИТИЯ ПРЕДПРИЯТИЯ ПРИ НЕОПРЕДЕЛЕННОСТИ ДЕНЕЖНЫХ ПОТОКОВ

Предложен критерий, позволяющий планировать и корректировать процесс формирования финансового профиля инвестиционной программы развития предприятия при вероятностных и нечетких денежных потоках.

Ключевые слова: инновационные проекты и программы, инновационные механизмы, инвестиции, финансовый профиль программы, чистый денежный поток, чистая приведенная стоимость, время окупаемости, рентабельность, неопределенность, математическое ожидание, дисконтирование

Запропоновано критерій, що дає змогу планувати і коригувати процес формування фінансового профілю інвестиційної програми розвитку підприємства при ймовірнісних і нечітких грошових потоках.

Ключові слова: інноваційні проекти і програми, інноваційні механізми, інвестиції, фінансовий профіль програми, чистий грошовий потік, чиста зведена вартість, час окупності, рентабельність, невизначеність, математичне сподівання, дисконтування

A criterion to plan and adjust the process of forming the financial profile of the investment program in the company's development of probabilistic and fuzzy cash flows.

Keywords: innovative projects and programs, innovative mechanisms. investment, financial profile of the program, the net cash flow, net present value, payback period, profitability, uncertainty, expectation, discounting

Постановка проблемы

Одной из основных проблем отечественной экономики является проблема сокращения и постепенной ликвидации существующего внешнеторгового дисбаланса. Очевидно, что решить эту проблему можно лишь путем производства импортно-замещающей продукции, увеличения конкурентной на внешнем продукции, а также расширением и укреплением внутреннего рынка. Такое направление развития отечественной экономики требует с одной стороны действенной государственной политики поддержки бизнеса, а с другой – предъявляет высокие требования к управлению инновационноинвестиционными программами развития.

Анализ последних исследований и публикаций

Проблеме управления развитием предприятий в последние годы посвящено немало научных публикаций. В частности, широкий круг вопросов управления развитием от теоретикометодологических до конкретно-практических

рассмотрен в работах [1-5]. К ним относятся вопросы управления инновационными проектами и программами, а также вопросы формирования инновационных механизмов. Указанные источники настоящее время составляют инструментария инновационного эффективного управления развитием предприятий и организаций. Однако, вопрос финансового планирования, оперативного текущего контроля и коррекции программы развития, который использует финансовый профиль программы, представляющий собой изменение чистой приведенной стоимости программы развития во времени, не отражен в научных публикациях.

Цель работы

Исходя из планируемых инвестиций в развитие предприятия, необходимо разработать аналитический способ оценки финансового профиля программы развития при неопределенности денежных потоков от реализации программы.

²Одесская национальная морская академия, Одесса

Изложение основного материала исследования

Финансовый профиль программы развития, определяемый как текущая приведенная разность между денежными потоками от реализации программы и инвестициями, является важнейшей характеристикой программы. Пересечение графиком профиля временной оси определяет окупаемости программы. Значение финансового профиля в момент окончания жизненного цикла программы определяет финансовый программы, т.е. суммарный чистый денежный доход, приведенный к начальному моменту.

Для получения аналитического выражения финансового профиля программы развития NPV(t) воспользуемся формулой расчета NPV проекта, приведенной в работе [6]:

$$NPV = PV - PVI = \sum_{i=1}^{N} \frac{CF(i)}{\prod_{n=1}^{i} (1 + r_n)} - \sum_{j=1}^{M} \frac{Jnv(\tau_j)}{\prod_{m=1}^{j} (1 + r_m)}, \quad (1)$$

где N — число частичных периодов времени $\Delta t = \frac{T}{N}$ на интервале жизненного цикла [0;T]; CF(i) — денежный поток в i-й период; r_n и r_m — дисконтные ставки в соответствующие периоды денежных потоков и инвестиций; M — число периодов инвестирования; $Jnv(\tau_i)$ — объем инвестиций в период τ_i .

Формула (1) учитывает изменение стоимости денежных средств во времени и отделяет процесс дисконтирования денежных потоков от дисконтирования инвестиций, что необходимо делать по причине несовпадения этих процессов по времени. Учитывая, что программа развития состоит из совокупности проектов по направлениям развития, *NPV* программы определится как сумма разности денежных потоков и инвестиций по всем проектам:

$$NPV = PV - PVI =$$

$$= \sum_{k=1}^{P} \left[\sum_{i=1}^{N} \frac{CF_{k}(i)}{\prod_{n=1}^{i} (1+r_{n})} - \sum_{j=1}^{M} \frac{Jnv_{k}(\tau_{j})}{\prod_{m=1}^{j} (1+r_{m})} \right], \tag{2}$$

где P — число проектов в программе; $CF_k(i)$ и $Jnv_k(\tau_j)$ — соответственно денежный поток и инвестиции k-ого проекта в периоды i и τ_j .

Для построения финансового профиля программы развития необходимо выразить *NPV* как функцию времени. С этой целью введем

параметр $t = \overline{1,N}$, определяющий текущее значение дискретного временного периода i. При этом текущие периоды инвестиций будут функцией параметра t. Кроме того, суммирование по текущему временному параметру t в формуле (2) должно стать завершающим, т.е. после суммирования по проектам программы. С учетом изложенного, формула для построения графика финансового профиля программы развития запишется так:

$$NPV(t) = PV(t) - PV(t) =$$

$$= \sum_{i=1}^{t} \sum_{k=1}^{P} \frac{CF_{k}(i)}{i} - \sum_{j=1}^{M(t)} \sum_{k=1}^{P} \frac{Jnv_{k}(\tau_{j})}{j},$$

$$= \sum_{i=1}^{t} \sum_{k=1}^{P} \frac{CF_{k}(i)}{i} - \sum_{j=1}^{M(t)} \sum_{k=1}^{P} \frac{Jnv_{k}(\tau_{j})}{j},$$
(3)

где $M(t) = \max_{j \le t} \{ \tau_j \}$.

График функции NPV(t) позволяет не только анализировать процесс изменения финансового профиля программы, времени окупаемости, но и синтезировать желаемый профиль путем варьирования входящих в формулу (3) параметров $P, Jnv_k(\tau_i)$, $\{\tau_i\}$, r_n , r_m .

Структура формулы (3) позволяет также оценить рентабельность программы развития PI как по частичным периодам t, так и за весь жизненный цикл T по формулам:

$$PI(t) = \frac{PV(t)}{PVI(t)},$$

$$PI(T) = \frac{PV(T)}{PVI(T)}.$$

Формула (3) позволяет строить финансовый профиль программы развития детерминированных потоках. Однако в реальных условиях реализации программы они по многим причинам практически никогда не Отсюда таковыми. возникает задача оценки профиля финансового программы при неопределенности денежных потоков.

Очевидно, что денежные потоки $\{CF_k(t)\}$ являются результатом инвестирования и влияния многих факторов на объемы реализации продукции, постоянных и переменных расходов. В общем случае любой пакет инвестиций в k-й проект программы приводит к различным денежным потокам с неопределенностью:

$$\begin{aligned} &\left\{Jnv_{k}\left(\tau_{j}\right)\right\} \rightarrow \left\{CF_{k}(i)\right\}_{1}, \\ &\left\{CF_{k}(i)\right\}_{2},...\left\{CF_{k}(i)\right\}_{r}, \end{aligned} \quad i = \overline{1,t} \; . \end{aligned}$$

В вероятностном случае неопределенности при использовании пакета $\{Jnv_k(\tau_j)\}$ значением финансового профиля программы в момент t может служить соответствующее математическое ожидание:

$$M\left[NPV\left(t,\left\{Jnv_{k}\left(\tau_{j}\right)\right\}\right)\right] =$$

$$= \sum_{q=1}^{r} NPV\left(t,\left\{CF_{k}\left(i\right)\right\}_{q}, \left\{Jnv_{k}\left(\tau_{j}\right)\right\}\right) \times$$

$$\times p\left(\left\{CF_{k}\left(i\right)\right\}_{q} \times \left\{Jnv_{k}\left(\tau_{j}\right)\right\}\right) =$$

$$= \sum_{q=1}^{r} NPV\left(t,\left\{CF_{k}\left(i\right)\right\}_{q}, \left\{Jnv_{k}\left(\tau_{j}\right)\right\}\right) \times$$

$$\times p\left(\left\{CF_{k}\left(i\right)\right\}_{q} / \left\{Jnv_{k}\left(\tau_{j}\right)\right\}\right),$$

$$(4)$$

где

$$p(\{CF_k(i)\}_q, \{Jnv_k(\tau_j)\}) =$$

$$= p(\{CF_k(i)\}_q / \{Jnv_k(\tau_j)\}) \times p(\{Jiv_k(\tau_j)\}) =$$

$$= p(\{CF_k(i)\}_q / \{Jnv_k(\tau_j)\})$$

есть вероятность появления потока $\{CF_k(i)\}_q$ при использовании пакета инвестиций $\{Jnv_k(\tau_j)\}$; $p(\{Jnv_k(\tau_j)\})=1$, т.к. математическое ожидание определяется при использовании пакета $\{Jnv_k(\tau_j)\}$.

При рассмотрении нескольких вариантов пакетов инвестирования возникает задача выбора наилучшего варианта из условия:

$$\max_{\{Jnv_k(\tau_j)\}} \sum_{t=1}^{N} M\left[NPV\left(t, \{Jnv_k(\tau_j)\}\right)\right). \tag{5}$$

Использование формул (4) и (5) сопряжено с трудностями, вызванными необходимостью определения денежных потоков $\{CF_k(i)\}_a$, условной вероятности $p(\!\{CF_k(i)\!\}_q/\!\{Jnv_k(au_j)\!\}\!)$ и др. Эти трудности обычно преодолеваются путем прогнозных, статистических, оценок, также имитационного моделирования. При этом следует провести ситуационный анализ и выяснить как скажется влияние той или иной ситуации на математическое ожидание NPV(t). Это означает, формуле (4) появится еще неопределенный параметр – ситуация S_g $(g = \overline{1,l})$. Формально этот факт учитывается следующим образом:

$$M \left[NPV \left(t, \left\{ Jnv_{k}(\tau_{j}) \right\} \right) \right] =$$

$$= \sum_{q=1}^{r} \sum_{g=1}^{l} NPV \left(t, \left\{ CF_{k}(i) \right\}_{q}, \left\{ Jnv_{k}(\tau_{j}) \right\}, S_{g} \right) \times$$

$$\times p \left(\left\{ CF_{k}(i) \right\}_{q} / \left\{ Jnv_{k}(\tau_{j}) \right\}, S_{g} \times p(S_{g}) \right),$$
(6)

где $p(S_g)$ — вероятность возникновения S_g -й ситуации; l — число различных ситуаций.

Если вероятность $p(S_g)$ не определена, то воспользоваться формулой (6) не представляется возможным. В этом случае поступим следующим образом. Обозначим через

$$\overline{NPV}\left(t,\left\{Jnv_{k}\left(\tau_{j}\right)\right\},S_{g}\right) =$$

$$= \sum_{q=1}^{r} NPV\left(t,\left\{CF_{k}\left(i\right)\right\}_{q},\left\{Inv_{k}\left(\tau_{j}\right)\right\},S_{g}\right) \times$$

$$\times p\left(\left\{CF_{k}\left(i\right)\right\}_{q}/\left\{Inv_{k}\left(\tau_{j}\right)\right\},S_{g}\right).$$
(7)

Очевидно, что данное выражение представляет собой усредненное значение $\overline{NPV}(t, \left\{Jnv_k\left(\tau_j\right)\right\}, S_g)$ по всем возможным денежным потокам при пакете инвестиций $\left\{Jnv_k\left(\tau_j\right)\right\}$ и ситуации S_g .

С учетом предыдущего, формула (6) запишется в виде:

$$M\left[NPV\left(t,\left\{Jnv_{k}\left(\tau_{j}\right)\right\}\right)\right] =$$

$$= \sum_{g=1}^{r} \overline{NPV}\left(t,\left\{Inv_{k}\left(\tau_{j}\right)\right\}, S_{g}\right) \times p\left(S_{g}\right). \tag{8}$$

Из этой формулы видно, что для максимизации математического ожидания финансового профиля программы в момент t при выбранном пакете $\{J_{nv_k}(\tau_i)\}$ инвестирования необходимо максимизировать \overline{NPV} . При этом отметим, что все выражения, стоящие под знаком формуле (6), как и в формуле (4), с той или иной точностью определимы на основании расчетных статистических данных и/или экспертных оценок. В отдельных случаях, когда можно предположить, что ситуации равновероятны, т.е. $p(S_g) = \frac{1}{4}$, $NPV(t, \{Jnv_k(\tau_i)\})$ математическое ожидание непосредственно определяется по формуле (6).

Денежные потоки зависят от ситуаций $\{S_g\}$. Если возникновение ситуаций является неопределенной в нечетком смысле, т.е. неизвестны и никак неопределимы вероятности $p(S_g)$, то для определения математического ожидания NPV по формуле (8) следует воспользоваться понятием нечеткого множества. Для этого будем считать, что $p(S_g)$ есть элемент множества F_g на универсальном множестве вероятностей

$$U = (0,1; 0,2; 0,3; 0,4; 0,5; 0,6,0,7; 0,8; 0,9; 1).$$

Например, пусть вероятность $p(S_g)$ определяется экспертами как высокая. Тогда один

из возможных вариантов нечеткого множества F_g может быть следующий:

$$F_g = \left(\frac{0}{0,1}; \frac{0,1}{0,2}; \frac{0,2}{0,3}; \frac{0,3}{0,4}; \frac{0,4}{0,5}; \frac{0,5}{0,6}; \frac{0,6}{0,7}; \frac{0,7}{0,8}; \frac{0,8}{0,9}; \frac{0,9}{1}\right),$$

где в числителе указано значение функции принадлежности элемента из U , в знаменателе – элемент U .

Далее, в качестве $p(S_g)$ в формуле (8) можно принять среднее значение отличных от нуля значений функции принадлежности нечеткого множества F_g :

$$\overline{p}(S_g) = \frac{0.2 + 0.6 + 0.7 + 1 + 0.9}{5} = 0.7.$$

Поступая так в отношении каждой ситуации $S_g \left(g=\overline{1,l}\right)$, получим возможность оценить значение математического ожидания NPV по формуле (8). Можно также рассчитать $M \left[NPV\right]$ при каждом ненулевом значении функции принадлежности ситуации т.е. $\mu \left(S_g\right) = \left\{0,2;0,6;0,7;1;0,9\right\}$ и усреднить их.

Аналогичным образом, переходя к нечеткому множеству, можно поступить при описании ситуаций с помощью лингвистических переменных. Например, вероятность возникновения ситуации: «малая», «средняя», «невысокая», «высокая» и т.п. Отправляясь от этих характеристик нетрудно, причем неоднозначно, ввести соответствующие нечеткие множества.

Выводы и перспективы дальнейших исследований

Полученные результаты позволяют оценивать и отслеживать в реальных условиях финансовый профиль программы развития предприятия. Выявлять перспективные направления развития с позиции их экономической эффективности.

Приведенные расчетные формулы текущего значения математического ожидания NPV(t) при неопределенности денежных потоков служат основой для имитационного моделирования различных вариантов программ развития с целью поиска наиболее эффективных в финансовом отношении программ.

Список литературы

- 1. Азаров М.Я. Инновационные механизмы управления программами развития / М.Я. Азаров, Ф.А. Ярошенко, С.Д. Бушуев. К.: Саммит-Книга, 2011. 528 с.
- 2. Ганущак-Єфименко Л. М. Методи управління інноваційним розвитком підприємства / Л.М. Ганущак-Єфименко // Актуальні проблеми економіки, 2010. N211(113). С. 83-95.
- 3. Керівництво з управління інноваційними проектами та програмами підприємств: Монографія // Перекл. з японського під ред. проф. Ярошенка $\Phi.O.-K.$: Новий друк, $2010.-160\ c.$
- 4. Рач В. А. Управління проектами : Практичні аспекти реалізації стратегій регіонального розвитку / В.А. Рач, О. В. Россошанська, О. М. Медведева; за ред. В.А. Рача. К.: «К.І.С.», 2010. 276 с.
- 5. Вороная Н. Ю. Организационно-управленческая структура предприятия при проектном развитии предприятия / Н. Ю. Вороная // Управління проектами та розвиток виробництва : Зб. наук. праць СНУ ім. В. Даля, 2010. —№1(33). С. 71-81.
- 6. Бурименко Ю.И. Экономический аспект проектно-ориентированного развития предприятия связи / Ю.И. Бурименко // Наукові праці ОНАЗ ім. О.С. Попова, 2008. №1. С. 93-96.

Статья поступила в редколлегию 21.05.2013

Рецензент: д-р техн. наук, проф. А.И. Рыбак, Международный гуманитарный университет Украина, Одесса.