Inghopmayitini mexnonoeaii npoexmyeanus

DOI: 10.32347/2412-9933.2025.64.225-230
UDC 004.05: 004.451.83:004.378

Tsiutsiura Mykola

DSc (Eng.), Professor, Professor of the Department of Software Engineering and Cybersecurity,
https://orcid.org/0000-0003-4713-7568

State University of Trade and Economics, Kyiv

Makoiedova Valentyna

Ph.D, Associate Professor of the Department of Digital Economy and System Analysis,
https://orcid.org/0000-0001-7518-894X

State University of Trade and Economics, Kyiv

Tsiutsiura Svitlana

DSc (Eng.), Professor, Professor of the Department of Software Engineering and Cybersecurity,
https.//orcid.org/0000-0002-4270-7405

State University of Trade and Economics, Kyiv

Kryvoruchko Olena

DSc (Eng.), Professor, Professor of the Department of Computer Systems, Networks and Cybersecurity,
https://orcid.org/0000-0002-7661-9227

National University of Life and Environmental Sciences of Ukraine, Kyiv

ARCHITECTURAL TEMPLATES WITH BUILT-IN METHODOLOGY
FOR DEVELOPING ERP SOLUTIONS

Abstract. Choosing a service-oriented architecture for modern software applications provides a wide range
of significant advantages that directly affect the quality, reliability, and sustainability of information
systems. Among the key benefits of this architectural approach are simplified system maintenance,
improved fault tolerance, increased reliability, accelerated development cycles, and enhanced flexibility of
software solutions in response to changing business and technological requirements. By decomposing an
application into independent services with clearly defined responsibilities and interfaces, service-oriented
architecture enables teams to develop, deploy, and scale system components more efficiently and with lower
operational risks. Despite its advantages, the implementation of a service-oriented architecture is
associated with a number of challenges and potential issues. These include increased system complexity,
difficulties in coordinating interactions between distributed services, latency in inter-service
communication, and the need for reliable mechanisms to ensure data consistency and fault handling.
Without proper architectural support, such systems may become difficult to manage, debug, and extend.
The purpose of the work is to reveal the specifics of using event generation and processing mechanisms,
which allow services to interact asynchronously and respond to changes in the system state in a timely and
controlled manner. Experience with asynchronous and event-driven architectural approaches
demonstrates that the application of well-established architectural patterns makes it possible to design
software systems that operate smoothly even under high load and in dynamic execution environments.
Event-based interaction models reduce tight coupling between services, enabling them to evolve
independently and improving the overall resilience of the system. This approach also supports better
scalability, as system components can be replicated or redistributed without significant changes to the core
architecture. Furthermore, asynchronous service-oriented architectures provide favorable conditions for
the incremental extension of system functionality. New services, business processes, or integration
components can be added without disrupting existing system operations, which is particularly important in
long-term software projects with evolving requirements. The use of standardized communication protocols,
message brokers, and event generators ensures consistency, reliability, and transparency of interactions
across the system. The results of the analysis confirm that the combination of service-oriented architecture
principles with asynchronous event-driven mechanisms forms a robust foundation for building scalable,
adaptable, and maintainable software applications. Such an architectural approach allows developers to
balance system complexity with flexibility, ensuring high software quality and long-term effectiveness in
rapidly changing technological environments.

Keywords: software architecture; modification, extensibility, scalability, software quality; system
development architecture

© M. Tsiutsiura, V. Makoiedova, S. Tsiutsiura, O. Kryvoruchko 225

Ynpaeninusa pozsumrxom cknaonux cucmem (64 — 2025)

ISSN 2219-5300

Introduction

Choosing a service-oriented architecture (SOA) for
modern software applications provides a number of
significant advantages, including simplified maintenance,
increased reliability, accelerated development cycles,
and improved flexibility of software systems in response
to changing requirements. A well-designed architecture
allows developers to decompose complex systems into
independent services with clearly defined
responsibilities, which facilitates parallel development
and improves overall system stability [1; 5; 8 — 10].

At the same time, the implementation of service-
oriented architectures is accompanied by a number of
challenges and potential problems related to the
coordination of distributed components, management of
asynchronous interactions, and ensuring data
consistency. These challenges can be effectively
addressed through the use of appropriate event generators
and orchestration mechanisms. Practical experience with
asynchronous and event-driven architectures shows that,
by applying proven architectural patterns, it is possible to
design software applications that operate smoothly, are
easily scalable, and allow new functions or business
processes to be added without excessive effort or
architectural restructuring [2; 5].

Objective of the work
The concept of service-oriented architecture

Today, a popular architectural approach for
developing software applications based on individual
modules is service-oriented architecture (SOA).

Synchronous SOA assumes that the system sends a
request and expects an immediate response, so in this
case, communication between services does not require

" Google Servers]
== "~

| Your App
.]

| '
— —

Request token ———

> User login & consent
User

| S— Authorization - - - - - -4
code —

Exchange code =
for token

- - - - - Token response - - - - - -

Use token to call
Google API

this. This means that the client can send a request and
move on to other tasks without waiting for a response.

Asynchronous SOA assumes that each service is
autonomous and performs a separate task. In such an
architecture, the interaction between services does not
require an immediate response, which allows the client to
send a request and continue other tasks without waiting
for an instant response. For example, when developing an
application for forming an educational trajectory, after
forming one request, the user can continue to view
resources or make other requests without waiting for the
previous request to be formed and played back. When the
request is processed, the user will receive a notification
(Fig. 1) [6 — 10]. This ability to send a request and receive
a response at an indefinite time is a characteristic feature
of asynchronous SOA.

Summary of the main material

Challenges in implementing asynchronous service-
oriented architecture

Developing asynchronous service-oriented
architectures comes with a number of potential
challenges.

Managing the state of each individual process. It
can be difficult to track and manage the state of each
individual process. After placing a request, it goes
through various stages: confirmation, preparation,
educational service, preparation, delivery. Each of these
stages is an independent event, and some of them can
occur simultaneously.

Accurately managing the state of each event in such
distributed processes is a difficult task. For example, if
the program shows that the request is only confirmed,
when in fact it is already ready to ship, this can lead to
confusion and customer user.

App x Google Servers
Request token il
]

User login & consentj

Authorization code

r__

s e 0 S

]
! Exchange code for token
| L4
:‘ Token response |
1
| Use token to call APl |
| |
- - Validate JWT ;“—_‘
i i
1 1
App ! Google Servers

Figure 1 — Synchronous and asynchronous architectural patterns for building software applications by individual modules

226

Inghopmayitini mexnonoeaii npoexmyeanus

The image below is an example of what the
architecture of such event-driven software might look
like. Whenever an event occurs, it will trigger a new
operation. So, essentially, instead of a sequence of steps,
the system executes events X, Y, and Z separately,
without really understanding the sequence of steps that
occur (Fig. 2). [1; 4].

Fault tolerance and maintainability. If a request is
rejected during the work process or the system is not
notified of a new request, this may cause the entire
process to stop. Therefore, it is important to provide
effective error handling mechanisms that will increase
the reliability of the software. For example, the system
can retry a failed transaction or notify the user of the
problem and offer to return to the previous step.
Asynchronous systems are inherently complex. Over
time, as they develop and scale, this complexity only
increases. For example, if you want to add a priority
delivery feature for customers, a poorly designed system
may require significant changes to many components,
which will complicate the development and maintenance
process [2 — 5]. Maintaining maintainability means that
the system allows for easy changes, extensions, and
scaling without disrupting its operation and without
excessive effort.

To increase fault tolerance, various errors may
occur during the request processing process, such as
deviations in the formation of an educational trajectory
or a notification that the system did not receive the
request. Orchestrators have built-in mechanisms to

automatically retry failed operations or apply alternative
strategies, allowing the system to continue operating
without disruption. For example, in the event of a
problem with the lighting system the orchestrator can
configure the number of retries and the intervals between
them, ensuring flexibility and reliability of the process.

System tracing and monitoring. An educational
environment system such as Uber Eats involves many
components: the client application, lighting system and
back-end services. Tracing a specific process or
identifying performance bottlenecks can be a difficult
task. For example, if a client reports that they have not
received their trajectory, although the application shows
that it has been formed, without proper monitoring it is
difficult to determine at what stage the error occurred -
processing and formation of the request. [3, 5]. In the
diagram we saw a system that was completely event-
driven, now orchestrators take care of the sequencing of
all events.

The Role of Orchestration in Solving Asynchronous
SOA Problems. Orchestration is a key element in
ensuring the efficiency, reliability, and scalability of
asynchronous service-oriented architectures. It acts as a
central coordinator that manages all processes, similar to
a conductor ensuring the smooth operation of an
orchestra (Fig. 3) [3; 5].

Whereas in the previous diagram we saw a system
that was completely event-driven, now orchestrators take
care of the sequence of all events.

Client Auth Server Resource Server

Auth (email & password)

Auth response with token

Validate

Generate JWT

The client will send HTTP request
with the token in header

Validate Token

The server returns the response
to the client

A

Figure 2 — Basic Authentication flow of JWT [1; 4]

227

Ynpaeninusa pozsumrxom cknaonux cucmem (64 — 2025)

ISSN 2219-5300

User Harmonist

Order service

Confirmation service Transfer service

T [
1 1
request formation | event activation |

request posted

SR

accommodation
status

activation confirmation

preparation completed

]

1
1
1
1
1
1
1
1
1
|
1
I~]
1
: state of |
H preparation '
1 1
1 1
| execution activation |
T T
1 1
request execution < request completed '
1 1
1 1
. ! .
orchestration : e i
LRI i status |
consistent ' !
transitions ! !
1 1
User Harmonist Order service Confirmation service

transfer service

Figure 3 — Architecture Orchestrators take care of the sequence of all events [3; 5]

Sequence management Advanced system
monitoring capabilities

In complex systems such as educational platforms,
an order goes through various stages: confirmation,
preparation, and delivery. Without proper control of the
sequence of these stages, situations can arise when events
are performed in the wrong order, leading to confusion
and customer dissatisfaction. Orchestrators use
predefined workflows that clearly define the order and
dependencies between tasks, ensuring consistency and
accuracy of information for all participants in the
process.

In multi-component systems such as educational
services, it is important to be able to track the status of
each process. Orchestrators provide tools for detailed
monitoring and tracing, which allows teams to quickly
identify and fix problem areas. This provides
transparency of processes and helps increase overall
software efficiency.

There are several popular orchestration tools, each
of which has its own features:

1. Apache Airflow. A flexible open-source
orchestrator where tasks and their sequence are described
in Python. Suitable for data processing tasks and
scenarios with frequent workflow changes.

2. Argo. A native Kubernetes orchestrator
designed for cloud environments. Each workflow step is
executed in a separate container, providing flexibility and
fault tolerance.

3. Temporal. A simple and reliable open-source
orchestrator that supports multiple programming
languages. Useful for complex business logic with many
branches and built-in failure handling.

4. AWS Step Functions. A managed orchestrator
from Amazon Web Services that simplifies the
orchestration of complex multi-stage applications using
visual workflows and easily integrates with other AWS
services.

Embedded ERP solutions
in system development

Changes occurring both in the economic life of the
country and in the higher education system could not but
affect the requirements that are imposed on the
information system of a modern Russian higher
education institution.

Changes taking place both in the economic life of
the country and in the system of higher education
institutions could not but affect the requirements for the
information system of a modern Russian higher
education institution.

The time of information systems, the sole task of
which was the automation of the operational activities of
functional units of higher education institutions, is a thing
of the past. Such an approach, when the tasks of building
an information system were formulated mainly by
specialists in the field of information technology, cannot
provide the management of higher education institutions
with an effective tool for making management decisions

228

Inghopmayitini mexnonoeaii npoexmyeanus

and ensure effective management of higher education
institutions as a whole, relying not only on internal data
of higher education institutions, but also on information
available from external sources.

The purpose of the “Project Preparation” phase is
preliminary planning and preparation of the software
implementation project. ASAP contains numerous tools,
such as: “how to do something” instructions,
questionnaires, templates and checklists that save time
and ultimately project costs. ASAP contains a detailed
project plan, including task descriptions that explain in
detail how to complete a specific task. The ASAP project
plan gives an advantage during implementation and
ensures that all important tasks are included in the plan.
The management of higher education institutions
implementing the system will be assisted in conducting
all necessary checks in accordance with the provisions of
the project plan, as well as in the development of project
standards.

The purpose of the “Conceptual Design” phase is to
collect requirements for the system’s business processes
that are necessary to support the management tasks of a
specific HEI. The “Conceptual Design” phase completes
the definition of the scope of the software
implementation project [1 — 5].

This phase also includes the installation of software
and the installation of development equipment. At this
stage, in most cases, serious shortcomings in the
organization of the work of a number of departments are
revealed, especially in those processes where interaction
with other departments occurs:

— Lack of process implementation regulations and
responsibility for the final result.

— A number of functions are duplicated in several
departments, which is often the main source of data
inconsistency.

— Many logically related functions are performed
in different units, and, conversely, a number of units
perform functions that are not inherent to them.

Conclusions

1. A correctly selected orchestration tool helps
create stable, scalable and easy-to-maintain applications.
The choice of a suitable orchestrator depends on the
specifics of the tasks, scalability requirements and
integration with the existing infrastructure.

2. Orchestrators provide a clear structure of
which understanding
modification of the software. As the system develops,

workflows, simplifies and
there is a need to make changes or add new functions.
This allows you to quickly adapt to new requirements
without the risk of disrupting the operation of other
components, ensuring flexibility and scalability of the
architecture.

3. By abstracting the complexity of asynchronous
processes, orchestrators allow developers to focus on the
business logic and core functionality of applications. This
reduces development and time-to-market by reducing the
burden of infrastructure management and error handling.

References

1. Eeles, P. (2006). What is a software architecture? IBM Developer.
https://www.ibm.com/developerworks/rational/library/feb06/eeles/index.html
2. Tecnovy. (2025). Top 10 sofiware architecture & design patterns of 2025. https://tecnovy.com/en/top-10-software-

architecture-patterns

3. Kralicek, E. (2016). The accidental sysAdmin handbook: A primer for early level IT professionals (1st ed.). Apress.

4. Plakalovi¢, D., & Simi¢, D. (2021). Applying MVC and PAC patterns in mobile applications. Journal of Computing.

5. Richards, M. (2015). Sofiware architecture patterns. O'Reilly Media.

6. Nesterenko, O. V. (2019). Enterprise management information systems: Textbook. UkrNC.

7. Pichkur, G., & Frolov, O. (n.d.). How ERP for architects if.team became the basis for designing the future. If.team.
https://if.team/info/uk/cases/yak-erp-dlya-arhitektoriv-if-team-stav-osnovoyu-dlya-proyektuvannya-majbutnogo/

8. Tsiutsiura, M., Yerukaiev, A., & Lyashchenko, T. (2020). Balancing the educational space. Main elements of a
comprehensive model for assessing the quality of education. Management of Development of Complex Systems, 43, 142—147.

https://doi.org/10.32347/2412-9933.2020.43.142-147

9. Tsiutsiura, M. L., Tsiutsiura, S. V., & Kryvoruchko, O. V. (2019). Information technologies for the development of the

content of education [Monograph]. CP «Comprint.

10. Nikolajchuk, O. A., Pavlov, A. 1., & Yurin, A. Y. (2010). Component approach: Production expertise system module.

Sofitware Products and Systems, 3, 41-44.

The article has been sent to the editorial board 30.11.2025

229

Ynpaeninusa pozsumrxom cknaonux cucmem (64 — 2025) ISSN 2219-5300

Hrouropa Muxona Iroposuy

JlokTop TexHIYHMX HayK, mpodecop, npodecop kadeapu imKeHepii nporpaMHoro 3ade3nedeHHs Ta Kibepoe3mnexH,
https://orcid.org/0000-0003-4713-7568

Heporcasnuii mopeosenvro-exonomiunutl ynieepcumem, Kuis

Maxkoenosa BanenTuna Onexcanapisua

Ph.D., nonentka xadenpn nudpoBoi eKOHOMIKU Ta CHCTEMHOTO aHAII3Y,

https://orcid.org/0000-0001-7518-894X

Jleparcasnuii mopzoeenvHo-exonomiunull ynisepcumem, Kuie

Hrouropa CeiTnana Bonoagumupisaa

JIokTOpKa TeXHIYHUX HAYK, Tpodecopka, npodecopka Kadeapu imKeHepil mporpaMHOro 3ade3nedeHHs Ta Kibepoesmnekuy,
https://orcid.org/0000-0002-4270-7405

Heporcasnuii mopeosenvro-exonomiunutl ynieepcumem, Kuis

Kpupopyuko OJiena BonogumupiBna

JlokTOpKa TeXHIYHUX HayK, Mpodecopka, npodecopka kaheapr KOMII IOTEPHUX CUCTEM, MEpex Ta KibepOe3nekH,
https://orcid.org/0000-0002-7661-9227

Hayionanenuii ynieepcumem 6iopecypcia i npupoooxopucmyeanns Yxpainu, Kuig

APXITEKTYPHI TABJIOHH 13 BBYJOBAHOIO METOAOJIOI'IEIO PO3POBKHU ERP-PIINIEHD

Anomauia. Bubip cepgic-opicnmosanoi apximexmypu (SOA) Ons cyuacnux npozpamuux cucmem 3abes3neyye cymmesi
nepesacu y saxocmi, nadiinocmi ma cmarocmi I13. Knouosumu nepegacamu € cnpoujene 00CIY208Y8aAHHA, GUCOKA
8IOMOBOCMINKICIb, NPUCKOPEHHS PO3POOKU ma adanmueHicmy 00 3MiH Oiznec-eumoz. [lekomno3uyiss 000amxa HA He3anNedHCHi
cepsicu 3 uimkumu inmepgelicamu 00360153€ eQHeKMUEHO MACUMadyeamuy KOMROHEHMU mMa MIHIMI3Y8amu OnepayitiHi pusuKi.
Pasom 3 mum, enposadxcenns SOA cynpogooxcyemvcsa CKIAOHICIIO KOOPOUHAYIi pO3NOOINeHUx cepeicie, 3ampumxamu 8
KOMYHIKayisax ma nompe6or y HAOIlHUX Mexanizmax yseoodicenocmi oanux. be3 manescnoi apximexmyproi niompumxu maxi
cucmemu cmawms CKIAOHUMU O KePYy8aHHA Ma HANa200xceHHA. Memow pobomu € 00cnioxcenus cheyuiku mexauismie
eenepayii ma 06pobxu noodiil, wo 3abe3neuyioms ACUHXPOHHY 83AEMOOII0 CepBiCi@ i KOHMPOILOBAHY PeaKyilo HA 3MIHU CMAaHy
cucmemu. 3acmocysants nepesipenux nooic6o-opieHMOBAHUX NAMEPHIE8 003605€ NPOECKMYBAMU CUCMEMU, CIMIUKI 00 BUCOKUX
Hasanmasicenv. Mooeni 83aemo0ii Ha ocHO8i noodill 3MeHuyIomb 36'A3HICb CePeici8, CNPUAIOYU X HE3ANEHCHOMY PO3BUMKY Ma
macwmabosanocmi 6e3 padukanvhux smin cmpykmypu. Acunxponni SOA-piwenns maxooic cmeopioioms yMosu O
IHKPEMEHMANbHO20 POSUUPEHHS DYHKYIOHALY 6e3 3YNUHKU ICHYIOUUX NPOYECis, WO KPUMUUHO Ol 00820CMPOKOBUX NPOECKMIS.
Buxopucmanns 6poxepis nogioomnens i cmaHoapmu308aHUX NPOMOKONIE 2apanmye HAOIUHICMb ma npo30picmb 63A€MOOI.
Pesynomamu ananizy niomeepoicyioms, ujo noeonans npunyunie SOA 3 ACUNXPOHHUMU MEXAHIZMAMU € HAOTUHUM DYHOAMEHMOM
Ol CMBOpeHHA a0anmueno20 ma AKicHo2o 113 y OuHamiuHomMy mexHon02iuHoOMYy cepedosuLyi.

Knwuogi cnoea: apximexkmypa npozpamnozo 3abe3neyeHHsa; MOOudikayia; po3uiupioeanicmes; Macuimadoeanicmo;
AKICIMb NPOZPAMHO20 3a0e3neUeHHA; apXimeKmypa po3pooKu cucmemu

Link to publication

APA Tsiutsiura, M., Makoiedova, V., Tsiutsiura, S., & Kryvoruchko, O. (2025). Architectural patterns with built-in ERP
system development methodology. Management of Development of Complex Systems, 64, 225-230,
dx.doi.org\10.32347/2412-9933.2025.64.225-230.

ACTY [romopa M. 1., Maxkoenosa B. O., Liromopa C. B., Kpusopyuko O. B. ApxitekrypHi mabmoHu i3 BOyIOBaHOIO
Merojonorieto po3pobku ERP-pittens. Ynpasninus pozeumrom criaonux cucmenm. Kuis, 2025. Ne 64. C. 225 — 230,
dx.doi.org\10.32347/2412-9933.2025.64.225-230.

230

