ГІБРИДНИЙ МУЛЬТИАГЕНТНИЙ МЕТОД ДЛЯ ОПТИМІЗАЦІЇ НЕЧІТКИХ КОМП'ЮТЕРНИХ СИСТЕМ
DOI:
https://doi.org/10.32347/2412-9933.2022.49.40-51Ключові слова:
нечітка комп’ютерна система, параметрична оптимізація, мультиагентний метод, система автоматичного керування, нечіткий контролер, безпілотний літальний апаратАнотація
Останнім часом інтелектуальні комп’ютерні системи на основі нечіткої логіки та м’яких обчислень доволі ефективно застосовуються для розв’язання широкого спектру складних прикладних задач в різних сферах людської діяльності. Одним із перспективних напрямів сучасних досліджень в галузі штучного інтелекту є створення та апробація біоінспірованих мультиагентних та еволюційних методів синтезу й оптимізації нечітких систем автоматичного керування (САК) і систем підтримки прийняття рішень (СППР). Пропонована робота присвячена розробці та дослідженню мультиагентного методу параметричної оптимізації нечітких систем (НС) на основі гібридних покращених алгоритмів сірих вовків. Запропонований метод дає змогу більш ефективно проводити оптимізацію параметрів нечітких комп’ютерних систем порівняно з базовим і покращеним методами сірих вовків. У цьому методі використовуються стратегії групового полювання і розмірного полювання на основі навчання, а також стратегія локального пошуку на основі алгоритмів градієнтного спуску та розширеного фільтра Калмана, що дає змогу суттєво зменшувати обчислювальні витрати і збільшувати швидкість збіжності до оптимальних рішень при оптимізації параметрів досить складних нечітких систем. Для дослідження ефективності розробленого гібридного мультиагентного методу в роботі проведено синтез та параметричну оптимізацію нечіткої системи управління польотом безпілотного літального апарата (БПЛА). Зокрема, виконано оптимізацію векторів нормуючих коефіцієнтів, регульованих параметрів лінгвістичних термів (ЛТ) та вагових коефіцієнтів консеквентів правил бази правил (БП) для контролера висоти польоту нечіткої САК БПЛА. Отримані результати порівняльного аналізу підтверджують суттєві переваги розробленого гібридного мультиагентного методу параметричної оптимізації, а також доцільність його застосування для синтезу різнотипових САК та СППР на базі нечіткої логіки.
Посилання
Zadeh, L. A. et al. (Eds.). (2014). Recent developments and new directions in soft computing. STUDFUZ 317, Cham: Springer, 466. DOI: 10.1007/978-3-319-06323-2.
Kozlov, O. V., Skakodub, O. S. (2021). Synthesis and optimization of fuzzy DSS based on bioinspired swarm algorithms. Mohyla readings – 2021: Materials of the All-Ukrainian scientific-practical. conf. Mykolaiv: ChNU, рр. 18–21.
Mendel, J. M. (2017). Uncertain Rule-Based Fuzzy Systems, Introduction and New Directions. Second Edition, Springer International Publishing, 684.
Rutkovskaya, D., Pilinsky, M., Rutkovsky, L. (2006). Neural networks, genetic algorithms and fuzzy systems. Moscow: Hotline. Telecom, 452.
Kosko, B. (1994). Fuzzy Systems as Universal Approximators. IEEE Trans. on Computers, 43, 11, 1329–1333. DOI: 10.1109/12.324566
Kondratenko, Y. P., Kozlov, O. V., Korobko, O. V. (2004). Model based development of intelligent controllers for pyrolysis reactors control systems. Collection of scientific works of NUS. Mykolayiv, 6 (456), 66–74.
Rotshtein, A. P. (1999). Intelligent Identification Technologies: Fuzzy Sets, Genetic Algorithms, Neural Networks. Vinnitsa: "UNIVERSUM-Vinnytsia", 300. ISBN 966-7199-49-5.
Kondratenko, Y., Simon, D. (2018). Structural and parametric optimization of fuzzy control and decision making systems. Recent developments and the new direction in soft-computing foundations and applications. Selected Papers from the 6th World Conference on Soft Computing. Berkeley, USA, 2016. Series: Studies in Fuzziness and Soft Computing. 2018. 361. Springer International Publishing. P. 273–289. DOI https://doi.org/10.1007/978-3-319-75408-6_22.
Subbotin, S. O., Oliynyk, A. A., Oliynyk, O. O. (2009). Neiterative, evolutionary and multiagent methods of synthesis of fuzzy and neural networks models: monograph / under the general. ed. S. O. Subbotin. Zaporozhye: ZNTU, 375.
Kondratenko, Y. P., Al Zubi, E.Y.M. (2009). The Optimization approach for increasing efficiency of digital fuzzy controllers. Annals of DAAAM for 2009 & Proceeding of the 20th Int. DAAAM Symp. "Intelligent Manufacturing and Automation", Published by DAAAM International. Vienna, Austria, P. 1589–1591.
Nahlovsky, T. (2015). Optimization of Fuzzy Controller Parameters for the Temperature Control of Superheated Steam. Procedia Engineering, 100, 1547–1555.
Precup, R. E., David, R. C., Petriu, E. M., Szedlak-Stinean, A. I., Bojan-Dragos, C. A. (2016). Grey wolf optimizer-based approach to the tuning of PI-fuzzy controllers with a reduced process parametric sensitivity. Proc. 4th IFAC Intl. Conf. Intell. Control Autom. Sci., Reims, France, P. 55–60.
Sahoo, B. P., Panda, S. (2018). Improved grey wolf optimization technique for fuzzy aided PID controller design for power system frequency control. J. Sustainable Energy, Grids and Networks, 16, 278–299.
Hernandez, E., Castillo O., Soria, J. (2019). Optimization of fuzzy controllers for autonomous mobile robots using the grey wolf optimizer. 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), New Orleans, LA, USA, P. 1–6.
Mirjalili, S., Mirjalili, S. M. Lewis, A. (2014). Grey wolf optimizer. Adv. Eng. Software, 69, 46–61.
Nadimi-Shahraki, M. H., Taghian, S., Mirjalili, S. (2021). An improved grey wolf optimizer for solving engineering problems. J. Expert Systems with Applications, 166, 113917. https://doi.org/10.1016/j.eswa.2020.113917.
Kosanam, S., Simon D. (2006). Fuzzy membership function optimization for system identification using an extended Kalman filter. Fuzzy Information Processing Society, 459–462. DOI: 10.1109/NAFIPS.2006.365453.
Kondratenko, Y. P., Kozlov, A. V. (2019). Parametric optimization of fuzzy control systems based on hybrid particle swarm algorithms with elite strategy. Journal of Automation and Information Sciences, 51, 12, 25–45, DOI: 10.1615/JAutomatInfScien.v51.i12.40.
Irscheid, A., Konz, M., Rudolph, J. (2018). A Flatness-Based Approach to the Control of Distributed Parameter Systems Applied to Load Transportation with Heavy Ropes. Y. P. Kondratenko et al. (eds.). Advanced Control Techniques in Complex Engineering Systems: Theory and Applications, Studies in Systems, Decision and Control, 203, 279-294. https://doi.org/10.1007/978-3-030-21927-7_13.
Skakodub, O., Kozlov, O., Kondratenko, Y. (2021). Optimization of Linguistic Terms' Shapes and Parameters: Fuzzy Control System of a Quadrotor Drone. 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), pp. 566-571, doi: 10.1109/IDAACS53288.2021.9660926.
Eltayeb, A., Rahmat, M. F., Basri, M. A. M., Eltoum, M. A. M., El-Ferik, S. (2020). An Improved Design of an Adaptive Sliding Mode Controller for Chattering Attenuation and Trajectory Tracking of the Quadcopter UAV. IEEE Access, 8, 205968-205979.
Timchenko, V. L., Lebedev, D. O. (2019). Optimization of Processes of Robust Control of Quadcopter for Monitoring of Sea Waters. Journal of Automation and Information Sciences, 51, 2, 1–10.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2022 Олексій Козлов , Юрій Кондратенко, Олександр Скакодуб
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.